class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init='warn', max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='lloyd')[source] K-Means聚类。 在用户指南中了解更多信息。 参数 n_clusters:int,默认值为8 要形成的簇的数量以及要生成的质...
1 Kmeans模型理论 1.1 K-均值算法(K-means)算法概述 K-means算法是一种无监督学习方法,是最普及的聚类算法,算法使用一个没有标签的数据集,然后将数据聚类成不同的组。 K-means算法具有一个迭代过程,在这个过程中,数据集被分组成若干个预定义的不重叠的聚类或子组,使簇的内部点尽可能相似,同时试图保持簇在不...
在使用KMeans算法时,需要根据实际数据选择合适的聚类数目n_clusters。聚类数目过少可能导致信息丢失,过多则可能产生过拟合。 初始质心的选择对KMeans算法的结果有一定影响。可以通过设置init参数为’k-means++’来优化初始质心的选择。 算法的收敛性受max_iter和tol参数的影响。在实际应用中,需要根据数据规模和计算资源...
在Python中,我们可以使用scikit-learn库中的KMeans类来实现Kmeans算法。 KMeans类的主要参数包括: 1. n_clusters:指定要将数据分成的簇的数量。这是必需的参数,没有默认值。通常需要根据数据的特点来选择一个合适的值,可以使用肘部法则(elbow method)来帮助确定最佳的簇数量。 2. init:指定初始化簇质心的方法。
在上一节我们对K-Means的原理做了初步的探讨,这里我们对K-Means的算法做一个总结。 首先我们看看K-Means算法的一些要点: 1)对于K-Means算法,首先要注意的是 k 值的选择,一般来说,我们会根据对数据的先验经验选择一个合适的 k 值,如果没有什么先验知识,则可以通过交叉验证选择一个合适的 k 值。
from sklearn.cluster import KMeans 1. K-means在Python的三方库中的定义是这样的: class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances=’auto’, verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm=’au...
km = KMeans() # 参数: # n_clusters=3,表示k=3,也就是随机三个聚类中心,最小值是2 # init,聚类中心初始化方法,默认k-means++ # max_iter,最大迭代次数,默认300,如果后期无法收敛可以尝试增加迭代次数 # random_state=1,随机种子,默认是None ...
sklearn.cluster.KMeans(n_clusters=K) 1. n_cluster:聚类个数(即K),默认值是8。2. init:初始化类中心的方法(即选择初始中心点的根据),默认“K-means++”,其他可选参数包括“random”。3. n_init:使用不同类中心运行的次数,默认值是10,即算法会初始化10次簇中心,然后返回最好的一次聚类结果。4. max...
KMeans(init="k-means++", n_clusters=3) 这段代码即将估计器拟合上述的样本集。其中, init 参数即为上述所讲KMeans++的初始化选择方式。而后的参数为设定分成多少类。 拟合后的 KMeans 估计器是可以进行调用的,这里我们调用类中心点( k_means.cluster_centers_ )和样本所属类别( k_means.labels_ )。
KMeans( # 聚类中心数量,默认为8 n_clusters=8, *, # 初始化方式,默认为k-means++,可选‘random’,随机选择初始点,即k-means init='k-means++', # k-means算法会随机运行n_init次,最终的结果将是最好的一个聚类结果,默认10 n_init=10, # 算法运行的最大迭代次数,默认300 max_iter=300, # 容忍...