可以通过设置init参数为’k-means++’来优化初始质心的选择。 算法的收敛性受max_iter和tol参数的影响。在实际应用中,需要根据数据规模和计算资源调整这些参数,以确保算法能够收敛到最优解。 在处理高维数据时,KMeans算法可能受到“维度灾难”的影响。此时,可以考虑使用降维方法(如PCA)对数据进行预处理。 总之,sklea...
kmeans = KMeans(n_clusters=3) # 获取模型 kmeans.fit(X_train) #这里不需要给他答案 只把要分类的数据给他 即可 1. 2. 3. 4. 预测 predict_y = kmeans.predict(X_train) plt.scatter(X_train[:,0],X_train[:,1],c=predict_y) #预测结果 plt.show() 1. 2. 3. 预测结果: 6.2 各省份...
参考博客:python之sklearn学习笔记来看看主函数KMeans: 代码语言:javascript 复制 sklearn.cluster.KMeans(n_clusters=8,init='k-means++',n_init=10,max_iter=300,tol=0.0001,precompute_distances='auto',verbose=0,random_state=None,copy_x=True,n_jobs=1,algorithm='auto') 参数的意义: n_clusters:簇...
如果能将优化目标转化为凸函数,就可以解决局部最优问题。 二、Sklearn库中的Kmeans类 kmeans类中参数和方法如下 class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances=’auto’, verbose=0, random_state=None, copy_x=True, n...
然后,介绍K-means的Python实现,K-means的Sklearn实现和用户聚类分群等聚类具体应用; 最后,对K-means进行总结,指出K-means的优缺点,K-means的改进办及聚类和分类的区别。 本文目录如下: 1. K-means基础 1.1. 聚类 1.2. 聚类分类 1.3. 基于划分的聚类算法 ...
1python复制代码2 import numpy as np3 from sklearn.cluster import KMeans4 import seaborn as sns5 import plotly.express as px 三、KMeans算法实战 1.生成示例数据为了演示KMeans算法的效果,我们可以先生成一些示例数据。这里我们使用NumPy库来生成两组二维数据点,分别代表两个不同的簇。1python...
2. 引用Python库将样本分为两类(k=2),并绘制散点图: #只需将X修改即可进行其他聚类分析import matplotlib.pyplot as plt from sklearn.cluster import KMeans kemans=KMeans(n_clusters=2) result=kemans.fit_predict(X) #训练及预测 print(result) #分类结果 ...
python中KMeans包怎么导入 python kmeans sklearn (一).算法概念 K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 它的基本思想是,通过迭代寻找K个簇(Cluster)的一种划分方案,使得聚类结果对应的损失函数最小。其中,损失函数可以定义为...
KMeans算法的一个关键步骤是计算数据点到簇心的距离。默认情况下,sklearn使用简单的暴力方法来计算这些距离,这在大数据集上可能非常慢。幸运的是,sklearn提供了使用KD-Tree或Ball-Tree数据结构来加速距离计算的功能。要启用这些选项,只需在KMeans构造函数中设置algorithm='kd_tree'或algorithm='ball_tree'。 from sk...
(X, kmeans_model.labels_,metric='euclidean')) ,fontproperties=font) # 图像向量化 importnumpy as npfromsklearn.clusterimportKMeansfromsklearn.utilsimportshuffleimportmahotas as mh original_img=np.array(mh.imread('tree.bmp'),dtype=np.float64)/255original_dimensions=tuple(original_img.shape) ...