重复2、3直至K个初始簇中心被选出 执行KMeans算法的后续步骤 代码的重点实现主要是如何选取D(x)较大的样本。 一种实现方法是计算所有样本的D(x)总和(记作sum(D(x))),然后随机选取0 到 sum(D(x))之间的一个数(记作 randDis),再计算RandDis−=D(x),直至RandDis<=0,选取D(x)对应的样本点作为簇中...
4.K-Means的不足 K-Means算法的不足,都是由初始值引起的: 1)初始分类数目k值很难估计,不确定应该分成多少类才最合适(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目k。这里不讲这个算法) 2)不同的随机种子会得到完全不同的结果(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点) 算法流...
random_state=0)# 对数据进行拟合并获取聚类标签labels = kmeans.fit_predict(df[['X','Y']])# 将聚类标签添加到数据框中df['Cluster'] = labels# 打印带有聚类标签的数据框print(df)# 可视化结果plt.scatter(df['X'], df['Y'], c=df['Cluster'], cmap='viridis')# 为每个数据点添加标签(使用...
'g','r'] markers = ['o','v','s'] #生成一个字典保存每次的代价函数 distortions = [] K = range(1,10) for k in K: #分别构建各种K值下的聚类器 Model = KMeans(n_clusters=k).fit(X) #计算各个样本到其所在簇类中心欧式距离(保存到各簇类中心的距离的最小值) distortions.append...
3.不断迭代寻找质心的位置并实现kmeans算法 上述idx得到的300维向量是判断X中每个变量的归属类别,在此基础上,再对初始质心集群位置不断调整,寻找最优质心。 def compute_centroids(X, idx, k): m, n = X.shape centroids = np.zeros((k, n)) ...
我们现在使用Python语言来实现这个kmeans均值算法,首先我们先导入一个名叫make_blobs的数据集datasets,然后分别使用两个变量X,和y进行接收。X表示我们得到的数据,y表示这个数据应该被分类到的是哪一个类别当中,当然在我们实际的数据当中不会告诉我们哪个数据分在了哪一个类别当中,只会有X当中数据。在这里写代码的时候...
1import numpy as np 2 3defkmeans_xufive(ds, k): 4"""k-means聚类算法 5 6 k - 指定分簇数量 7 ds - ndarray(m, n),m个样本的数据集,每个样本n个属性值 8 """ 910 m, n = ds.shape # m:样本数量,n:每个样本的属性值个数11 result = np.empty(m, dtype=...
K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低。 K-menas的优缺点: 优点: 原理简单 速度快 对大数据集有比较好的伸缩性 ...
K-means算法缺点主要是: 对异常值敏感; 需要提前确定k值; 结果不稳定; 02 K均值算法Python的实现 思路: 首先用random模块产生随机聚类中心; 用numpy包简化运算; 写了一个函数实现一个中心对应一种聚类方案; 不断迭代; matplotlib包结果可视化。 代码如下: ...
它是通过 MiniBatchKMeans 类实现的,要优化的主配置是“ n _ clusters ”超参数,设置为数据中估计...