三、在 Python 中实现 K-means 聚类算法 以下是一个简单的 K-means 聚类算法的 Python 实现示例: importnumpyasnpfromsklearn.datasetsimportmake_blobsfromsklearn.clusterimportKMeansimportmatplotlib.pyplotasplt# 生成模拟数据集X, y = make_blobs(n_samples=500, centers=3, cluster_std=0.6, random_state=...
# 根据上述各流程定义kmeans算法流程defkmeans(X,k,max_iterations):#1.初始化中心点 centroids=centroids_init(k,X)# 遍历迭代求解for_inrange(max_iterations):#2.根据当前中心点进行聚类 clusters=create_clusters(centroids,k,X)# 保存当前中心点 prev_centroids=centroids #3.根据聚类结果计算新的中心点 cent...
dis2cents[i]=np.sqrt(np.sum(np.power(sample-centers[i,:],2)))returndis2cents#子函数:kmeans函数.# 这部分代码完成了kmeans算法中为数据点决定所属类别以及迭代更新类中心点的主要功能。# 注意numpy库的返回最小值索引的argmin函数以及计算平均值的mean函数的使用方法defkmeans(dataSet,k,iterNum...
@文心快码BaiduComatepython实现kmeans聚类算法 文心快码BaiduComate 在Python中实现K-means聚类算法,可以按照以下步骤进行: 1. 初始化聚类中心 首先,需要随机选择k个数据点作为初始的聚类中心。这可以通过从数据集中随机选择k个不重复的点来实现。 python import numpy as np def initialize_centroids(X, k): """ ...
K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的) 1、概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。
然后,介绍K-means的Python实现,K-means的Sklearn实现和用户聚类分群等聚类具体应用; 最后,对K-means进行总结,指出K-means的优缺点,K-means的改进办及聚类和分类的区别。 本文目录如下: 1. K-means基础 1.1. 聚类 1.2. 聚类分类 1.3. 基于划分的聚类算法 ...
当需要将其划分为四个簇时,即 k=4 时: 二.K-means聚类算法 kmeans算法又名k均值算法,K-means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。 其算法思想大致为:先从样本集中随机选取 k个样本作为簇中心,并计算所...
K-Means算法主要目标是计算出最小的各个点到自质心距离的总和。 原文如下: The main objective of the K-Means algorithm is to minimize the sum of distances between the points and their respective cluster centroid. K-Means实现步骤: 第一步和第二步:选择簇的个数K, 然后随意选择点位质心。我们假设K为...
K-means聚类是一种无监督学习算法,它将未标记的数据集分组到不同的聚类中。“K”是指数据集分组到的预定义聚类的数量。 我们将使用 Python 和 NumPy 实现该算法,以更清楚地理解这些概念。 鉴于: K = 簇数 X = 形状 (m, n) 的训练数据:m 个样本和 n 个特征 ...
Python代码实现K-Means算法: 有关于 .A 的用法:(flatten()函数可以是多维数组变换成一维数组, .A 则使得matrix 形式转化成 array 形式) >>>importnumpyasnp>>>demo_a2 = np.mat([[1,3],[2,4],[3,5]])>>>demo_a2 matrix([[1,3],