今天这篇文章将给大家介绍使用K-Means聚类分析广告效果案例。 01、项目背景 业务场景: 假如你们公司投放广告的渠道很多,每个渠道的客户性质也可能不同,比如在优酷视频投广告和今日头条投放广告,效果可能会有差异。 现在需要对广告效果分析实现有针对性的广告效果测量和优化工作。 本案例,通过各类广告渠道90天内额日均UV...
OneHotEncoderfromsklearn.metricsimportsilhouette_score# 导入轮廓系数计算模块fromsklearn.clusterimportKMeans# KMeans模块#Jupyter 魔法函数,可以显示绘图%matplotlibinline## 设置属性防止中文乱码mpl.rcParams['font.sans-serif']=[u'SimHei']mpl.rcParams['axes.unicode...
OneHotEncoderfromsklearn.metricsimportsilhouette_score# 导入轮廓系数指标fromsklearn.clusterimportKMeans# KMeans模块%matplotlib inline## 设置属性防止中文乱码mpl.rcParams['font.sans-serif'] = [u'SimHei']
聚类1的广告渠道各方面表现均比较一般,因此需要业务部门重点考虑其投放的实际价值。聚类2的广告渠道的短板是日均UV和平均注册率,因此该类媒体无法为企业带来大量的流量以及新用户。这类广告的特质适合用户转化,尤其是有关订单转化的提升。聚类3的广告渠道跟效果拔群,但是由于实例比较少,不排除是因为个例导致效果扩大,...
通过轮廓系数确定最佳K值,构建K-Means模型,实现广告渠道聚类。模型输出结果可直观展示各聚类的特征,分析每个类别下样本数量、占比与显著特征,为企业提供决策支持。聚类分析结果揭示了不同广告渠道的特性与效能,类别1(39%占比)广告媒体效果质量较低,类别2(35%)综合效果较好但日均UV为短板,类别3(...
在基于Python的KMeans广告效果聚类分析中,首要工作是数据准备与预处理。数据集密码:jxe6,具体解析与来源细节请自行查阅网络资源。确定K值的途径多样,而业务层面若能提出明确分类要求,则更为理想。缺乏明确指导时,采用肘部法则与轮廓系数作为决策依据。在确定K值环节,本文采用轮廓系数法。随后进行特征处理...
【Python】爬虫+ K-means 聚类分析电影海报主色调 每部电影都有自己的海报,即便是在如今这互联网时代,电影海报仍是一个强大的广告形式。每部电影都会根据自身的主题风格设计海报,精致的电影海报可以吸引人们的注意力。那么问题来了,不同风格的电影海报对颜色有什么样的偏好呢?
02、K-Means聚类算法 聚类算法:属于无监督机器学习算法,通过计算样本项之间的相似度(也称为样本间的距离),按照数据内部存在的数据特征将数据集划分为多个不同的类别,使类别内的数据比较相似,类别之间的数据相似度比较小。 闵可夫斯基距离(Minkowski): 当p为1的时候是曼哈顿距离(Manhattan) ...
简介:【python机器学习】python电商数据K-Means聚类分析可视化(源码+数据集+报告)【独一无二】 一、设计目的 客户价值分析是电商数据分析领域中一项重要的工作,其核心目标是深入了解和量化不同客户群体的行为,以识别和理解客户对企业的贡献程度。通过对每个客户的消费习惯、购买频率和交易金额等方面进行综合分析,企业可以...
在分析用户行为时,我们可以使用聚类分析来将用户分为不同的群体,以便针对不同群体制定个性化的推广策略。`scikitlearn`库提供了丰富的聚类算法,如KMeans聚类。通过分析不同聚类群体的特征和行为模式,我们能够更好地理解用户需求和行为偏好。 除了基本的统计分析和聚类,还可以进行回归分析来预测未来的推广效果。例如,建立...