无监督学习常用于聚类——输入数据没有标记,也没有确定的结果,而是通过样本间的相似性对数据集进行聚类,使类内差距最小化,类间差距最大化。无监督学习的目标不是告诉计算机怎么做,而是让它自己去学习怎样做事情,去分析数据集本身。常用的无监督学习算法有K-means、 PCA(Principle Component Analysis)。 聚类算法又...
OneHotEncoderfromsklearn.metricsimportsilhouette_score# 导入轮廓系数计算模块fromsklearn.clusterimportKMeans# KMeans模块#Jupyter 魔法函数,可以显示绘图%matplotlibinline## 设置属性防止中文乱码mpl.rcParams['font.sans-serif']=[u'SimHei']mpl.rcParams['axes.unicode...
选择彼此距离尽可能远的那些点作为中心点; 先采用层次进行初步聚类输出k个簇,以簇的中心点的作为k-means的中心点的输入。 多次随机选择中心点训练k-means,选择效果最好的聚类结果 (2)k值的选取 k-means的误差函数有一个很大缺陷,就是随着簇的个数增加,误差函数趋近于0,最极端的情况是每个记录各为一个单独的簇...
上面已经把kmeans的主要模块函数书写完毕,实际运行该算法并可视化结果。 def run_k_means(X, initial_centroids, max_iters): """计算当前簇的聚类中心 arg X:数据 idx:数据对应的类别 k:簇的个数 max_iters:迭代次数 return:最后数据X对应的所属簇号,以及簇的中心点 """ m, n = X.shape k = initial...
一、 K-means 1、基础 1 Clustering 中的经典算法,数据挖掘十大经典算法之一 2 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足: 同一 聚类中的对象相似度较高;而不同聚类中的对象相似度较小。 3 算法思想:
数据聚类系统导入文件 2)设置簇的个数,这里设置成2,并选择K-means聚类算法,显示的结果如下图: 数据聚类系统运行K-means聚类算法 3)设置簇的个数,这里设置成2,并选择K-中心点聚类算法,显示的结果如下图: 数据聚类系统运行K-中心点聚类算法 4)清屏,显示的结果如下图: 数据聚类系统清屏 2、实验源码 编译环境为...
原理+代码|Python实现 kmeans 聚类分析 来源:早起Python 作者:萝卜 1.前言 聚类分析是研究分类问题的分析方法,是洞察用户偏好和做用户画像的利器之一,也可作为其他数据分析任务的前置探索(如EDA)。上文的层次聚类算法在数据挖掘中其实并不常用,因为只是适用于小数据。所以我们引出了 K-Means 聚类法,这种方法...
k-means 聚类算法 通常,根据样本间的某种距离或者相似性来将样本分为不同类别,成为聚类。 比如给定数据集,部分数据(二维, 共80个)如下: 1.658985 4.285136 -3.453687 3.424321 4.838138 -1.151539 -5.379713 -3.362104 0.972564 2.924086 其可视化如下: image.png ...
5、案例四——Kmeans的后续分析 二、大数据量下的Mini-Batch-KMeans算法 主函数 : 三、sklearn中的cluster进行kmeans聚类 四、分类变量聚类方法的K-modes与K-prototype 延伸一:数据如何做标准化 延伸二:Kmeans可视化案例 延伸三:模型保存 延伸四:HDBSCAN与Kmeans的聚类的一些纪要 ...
K-Means聚类算法介绍 聚类算法:属于无监督机器学习算法,通过计算样本项之间的相似度(也称为样本间的距离),按照数据内部存在的数据特征将数据集划分为多个不同的类别,使类别内的数据比较相似,类别之间的数据相似度比较小。 闵可夫斯基距离(Minkowski): $$dist(X,Y)=\sqrt{\sum_{i=1}^{n}|X_i - Y_i|^p...