(2)损失函数和单变量一样,依然计算损失平方和均值 我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为: 求导数后得到: (3)向量化计算 向量化计算可以加快计算速度,怎么转化为向量化计算呢? 在多变量情况下,损失函数可以写为: 对theta求导后得到: (1...
(2)损失函数和单变量一样,依然计算损失平方和均值 我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为: 求导数后得到: (3)向量化计算 向量化计算可以加快计算速度,怎么转化为向量化计算呢? 在多变量情况下,损失函数可以写为: 对theta求导后得到: (1...
(2)损失函数和单变量一样,依然计算损失平方和均值 我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为: 求导数后得到: (3)向量化计算 向量化计算可以加快计算速度,怎么转化为向量化计算呢? 在多变量情况下,损失函数可以写为: 对theta求导后得到: (1...
# Python program to print multiple variables# using format() method with explicit namesname="Mike"age=21country="USA"print("{n} {a} {c}".format(n=name, a=age, c=country))print("Name: {n}, Age: {a}, Country: {c}".format(n=name, a=age, c=country))print("Country: {c}, ...
在本章中,我们将讨论数学形态学和形态学图像处理。形态图像处理是与图像中特征的形状或形态相关的非线性操作的集合。这些操作特别适合于二值图像的处理(其中像素表示为 0 或 1,并且根据惯例,对象的前景=1 或白色,背景=0 或黑色),尽管它可以扩展到灰度图像。 在形态学运算中,使用结构元素(小模板图像)探测输入图像...
Python class_decorators.py from decorators import timer @timer class TimeWaster: def __init__(self, max_num): self.max_num = max_num def waste_time(self, num_times): for _ in range(num_times): sum([i**2 for i in range(self.max_num)]) ...
1 import threading 2 import time 3 4 5 class MyThread(threading.Thread): 6 def __init__(self,num): 7 threading.Thread.__init__(self) 8 self.num = num 9 10 def run(self):#定义每个线程要运行的函数 11 12 print("running on number:%s" %self.num) 13 14 time.sleep(3) 15 16 ...
(3) See the frames of all functions/methods on the stack at this step, each of which shows its local variables. Here at step 41 we seemain()along with 4 recursive calls toinit(). (4) See all objects on the heap at the current step. Here it shows aLinkedListinstance withfirstandlast...
") def OpenFile(): name = fd.askopenfilename() print(name) def About(): print("This is a simple example of a menu") class myGUI: def __init__(self, root): self.root = root self.canvas = tk.Canvas(self.root, borderwidth=1, relief="sunken") self.canvas.pack( fill=tk.BOTH...
def __init__(self, app): self.app = app #app=Flask(__name__)的实例 self.url_adapter = app.create_url_adapter(None) self.g = app.app_ctx_globals_class() # Like request context, app contexts can be pushed multiple times # but there a basic "refcount" is enough to track them....