下面是一个使用imbalanced-learn库进行文本分类的过采样的示例代码: 代码语言:txt 复制 from imblearn.over_sampling import RandomOverSampler from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import SVC from sklearn.pipeline import make_pipeline # 假设X是文本特征向量,y是对应的类...
from imblearn.pipeline import make_pipeline as imbalanced_make_pipeline from imblearn.over_sampling import SMOTE from imblearn.under_sampling import NearMiss from imblearn.metrics import classification_report_imbalanced from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score, a...
scores = cross_val_score(pipeline, X, y, scoring='roc_auc', cv=cv, n_jobs=-1) print('Mean ROC AUC: %.3f' % mean(scores)) 还可以通过调整 SMOTE 的 k 最近邻的不同值(默认是5): # grid search k value for SMOTE oversampling for imbalanced classificationfrom numpy import mean from s...
我在ANACONDA Navigator 上安装了“imbalanced-learn”(版本 0.3.1)。当我使用 Jupyter (Python 3) 从不平衡学习网站运行示例时: from imblearn.datasets import make_imbalance from imblearn.under_sampling import NearMiss from imblearn.pipeline import make_pipeline from imblearn.metrics import classification_repor...
SMOTE 的一个主流实现是来自于sklearn的contrib项目imbalanced_learn,使用imbalanced_learn的smote符合sklearn的API规范。 from sklearn.datasets import make_classification from imblearn.over_sampling import SMOTE from collections import Counter X, y = make_classification(n_classes=2, class_sep=2, weights=[0....
sudopipinstallimbalanced-learn 您可以通过打印已安装的库的版本来确认安装成功: # check version number import imblearn print(imblearn.__version__) 运行示例将打印已安装库的版本号;例如: 0.5.0 平衡数据的SMOTE 在本节中,我们通过将SMOTE应用于不平衡的二元分类问题,从而初步认识SMOTE。
imblearn全名为“imbalanced-learn”,是一个扩展了scikit-learn的库,提供了一系列处理不平衡数据集的技术,包括过采样(oversampling)、欠采样(undersampling)和集成方法。imblearn中的许多算法都是基于原始的scikit-learn接口设计的,方便与现有的机器学习pipeline进行集成。
openml_speed_dating_pipeline_steps 用于使用我们的自定义转换器。 imbalanced-learn 用于处理不平衡的类别 shap 用于显示特征的重要性 为了安装它们,我们可以再次使用pip: pip install -q openml openml_speed_dating_pipeline_steps==0.5.5 imbalanced_learn category_encoders shap OpenML 是一个旨在使数据科...
imbalanced-learn==0.4.3 isodate==0.6.0 itsdangerous==1.1.0 jeepney==0.4.3 jinja2==2.11.1 jmespath==0.9.5 joblib==0.14.0 json-logging-py==0.2 jsonpickle==1.3 jsonschema==3.0.1 kiwisolver==1.1.0 liac-arff==2.4.0 lightgbm==2.2.3 ...
Pipeline对象接收元组构成的列表作为输入,每个元组第一个值作为变量名,元组第二个元素是sklearn中的transformer或Estimator。管道中间每一步由sklearn中的transformer构成,最后一步是一个Estimator。 本次数据集中,管道包含两个中间步骤:StandardScaler和PCA,其都属于transformer,而逻辑斯蒂回归分类器属于Estimator。