最后,我们对每个组应用sum函数来计算每个公司的总销售额。 3. agg函数的基本概念和用途 agg函数是Pandas中用于执行聚合操作的另一个重要函数。与groupby函数结合使用时,agg函数可以对分组后的数据进行各种统计计算,如求和、平均值、最大值、最小值等。agg函数非常灵活,可以接受单个函数、函数列表或函数字典作为参数。
rfm_gb = data_merge.groupby(['year','会员ID'],as_index=False).agg({'date_interval':'min', # 计算最近一次订单时间 '提交日期':'count', # 计算订单的频率 '订单金额':'sum'}) # 计算订单的总金额 1. 2. 3. 这里agg()函数是对groupby后的数据进行聚合计算,而且是批量,这里批量是几个一起来...
df.groupby('name').agg({'salary':'sum'}).reset_index() df.groupby('name')['salary'].sum().reset_index() 1. 2. 对多列聚合 score = df.groupby('name').agg({'salary':'sum', 'score':'mean'}).reset_index() score.columns = ['name', 'salary_sum', 'score_mean'] score ''...
groupby('Category').agg({'Value': ['sum', 'count']}) print(result) 运行上述代码,将得到以下输出结果: 代码语言:txt 复制 Value sum count Category A 3 2 B 12 3 C 6 1 上述代码中,首先创建了一个包含Category和Value两个字段的DataFrame。然后使用groupby函数对Category字段进行分组,并使用agg函数...
从0.20.1开始,pandas引入了agg函数,它提供基于列的聚合操作。而groupby可以看做是基于行,或者说index的聚合操作。 从实现上看,groupby返回的是一个DataFrameGroupBy结构,这个结构必须调用聚合函数(如sum)之后,才会得到结构为Series的数据结果。 而agg是DataFrame的直接方法,返回的也是一个DataFrame。当然,很多功能用sum、...
关键技术: groupby函数和agg函数的联用。在我们用pandas对数据进行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。首先创建一个dataframe对象: 下面我们同时使用groupby和agg函数对该数据表进行分组聚合操作。 多重函数以字典形式传入: 在我们对数据进行聚合的过程中,除了使用sum()、max ()等系统自带的...
使用用户自定义函数聚合时的性能,通常比不上使用GroupBy的pandas内置方法。所以,在我们使用用户自定义函数的时候,可以考虑将复杂的操作分解为使用内置方法的操作链。我们先来看一个例子 通过kind列进行分组,把分组后的height列,先转换为int整形,最后通过sum进行加总聚合操作。注意,这里是int整形,没有小数部分,...
所以针对Groupby后agg的用法,就是DataFrame.agg的用法,不用额外说什么,照样是 列表、字典 形式传入。 列表传参 df_agg = df.groupby('Country').agg(['min', 'mean', 'max']) print(df_agg) ---print--- Income Age min mean max min mean max Country America 40000 40000.000000 40000 250 25...
df1 = df[df['A'] == 'asia'].groupby(['A', 'C'], as_index=False).sum()...
这可以通过组上的 agg 来完成。 agg 接受一个参数,指定应该对每一列执行什么操作。 df.groupby(['name'], as_index=False).agg({'value1': 'sum', 'value2': 'sum', 'otherstuff1': 'first', 'otherstuff2': 'first'}) 原文由 Guybrush 发布,翻译遵循 CC BY-SA 3.0 许可协议 有...