梯度下降法(Gradient Descent)是机器学习中最常用的优化方法之一,常用来求解目标函数的极值。 其基本原理非常简单:沿着目标函数梯度下降的方向搜索极小值(也可以沿着梯度上升的方向搜索极大值)。 但是如何调整搜索的步长(也叫学习率,Learning Rate)、如何加快收敛速度以及如何防止搜索时发生震荡却是一门值得深究的学问。
# initialize parametersw_init =0b_init =0# some gradient descent settingsiterations =10000tmp_alpha =1.0e-2# run gradient descentw_final, b_final, J_hist, p_hist = gradient_descent(x_train ,y_train, w_init, b_init, tmp_alpha, iterations, compute_cost, compute_gradient)print(f"(w,...
defgradient_descent(X, y, learning_rate, num_iterations):# 初始化权重向量weights=np.zeros(X.shape[1])# 计算样本数量m=X.shape[0]foriteration in range(num_iterations):# 计算预测值predictions=np.dot(X, weights)# 计算误差errors=predictions - y# 计算梯度并...
(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。 方向导数: 梯度: 2.求解过程梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。 3.简单实例智能...
梯度降落法(gradient descent),又名最速降落法(steepest descent)是求解无束缚最优化问题最经常使用的方法,它是1种迭代方法,每步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(由于在该方向上目标函数降落最快,这也是最速降落法名称的由来)。
随机梯度下降(Stochastic Gradient Descent,SGD)为传统梯度下降方法增添了一些新意。术语‘随机’指的是与随机概率相关的系统或过程。因此,这种随机性被引入到梯度计算的方式中,与标准梯度下降相比,显著改变了其行为和效率。 在传统的批量梯度下降中,你需要计算整个训练集的损失函数梯度。可以想象,对于大型数据集而言,这...
梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来)。
梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。
梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来)。 梯度下降法特点:越接近目标值,步长越小,下降速...
Stochastic Gradient Descent 梯度下降算法每次从训练集中随机选择一个样本来进行学习。批量梯度下降算法每次都 会使用全部训练样本,因此这些计算是冗余的,因为每次都使用完全相同的样本集。而随机 梯度下降算法每次只随机选择一个样本来更新模型参数,因此每次的学习是非常快速的,并 且可以进行在线更新。随机梯度下降最大的...