Joolin20.0JJNaNJay46.0dtype:float64 对于许多应用而言,Series有一个重要的功能:在算术运算中,它可以自动对齐不同索引的数据。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 sdata={'Joolin':20,'Jay':46}states=['Joolin','DT','Jay']obj1=pd.Series(sdata)
import polars as pl import time # 读取 CSV 文件 start = time.time() df_pl = pl.read_csv('test_data.csv') load_time_pl = time.time() - start # 过滤操作 start = time.time() filtered_pl = df_pl.filter(pl.col('value1') > 50) filter_time_pl = time.time() - start # 分组...
Python program to get unique values from multiple columns in a pandas groupby # Importing pandas packageimportpandasaspd# Importing numpy packageimportnumpyasnp# Creating a dictionaryd={'A':[10,10,10,20,20,20],'B':['a','a','b','c','c','b'],'C':['b','d','d','f'...
df.sort_values(['省份','销售额'],ascending=[False,False]) 6. 分组聚合 分组聚合是数据处理中最常用的一个功能,使用groupby函数,括号内跟分组的对象,中括号中加运算对象,比如这里计算各个区域的订单数据,由数据可得华南区域的订单数最多,有2692单,西南区域的订单数最少,有232单。 df.groupby('区域')['订...
directive to partition the input-- rows such that all rows with each unique value in the `a` column are processed by the same-- instance of the UDTF class. Within each partition, the rows are ordered by the `b` column.SELECT*FROMfilter_udtf(TABLE(values_table)PARTITIONBYaORDERBYb)ORDER...
df.values #值的二维数组,返回numpy.ndarray对象 s.nunique() #返回唯一值个数 s.unique() #唯一值数据,返回array格式 (3)数据筛选 数据筛选的本质无外乎就是根据行和列的特性来选择满足我们需求的数据,掌握这些基本的筛选方法就可以组合复杂的筛选方法。
format(BUILD_ID)) def main_process(self,df): df1=pd.DataFrame(df[["BUILD_ID","BUILD_NAME","OFF_TIME"]]) id_name =df1.set_index("BUILD_ID")["BUILD_NAME"].to_dict() #ID-名称映射字典 Build_list=df1.BUILD_ID.unique().tolist() data_list = [] for k in range(len(Build_...
df.to_excel(excel_writer,sheetname='',na_rep='',header=True,index=True, index_label=None,mode='w',encoding='utf-8') # excel_writer--存储文件路径 sheetname--sheet表名,默认sheet1 2. DataFrame的增删改查 2.1 查看DataFrame: df.values # 查看所有元素 ...
total = df.get_value(df.loc[df['tip'] ==1.66].index.values[0],'total_bill') distinct drop_duplicates根据某列对dataframe进行去重: df.drop_duplicates(subset=['sex'], keep='first', inplace=True) 包含参数: subset,为选定的列做distinct,默认为所有列; ...
使用nunique或value_counts方法获取Series的唯一计数值和计数频率。 df.groupby('year')['country'].nunique() #对df按'year'分组,并求出'country'列的唯一值的数目 1. 案例应用 本例使用在openml.org网站上称为“ credit-g”的数据集。 该数据集由提出贷款申请的客户的许多功能和一个目标变量组成,该目标变...