3. Python 输出素数要输出一系列素数,你可以使用上述函数,并结合循环,来生成一系列素数。defgenerate_primes(n): primes = []for num in range(2, n+1):if is_prime(num): primes.append(num)return primes这个函数接受一个正整数 n 作为输入,然后生成从2到 n 范围内的素数,并将它们存储在一...
接下来的步骤是使用刚才的函数来找出一定范围内的所有质数。 def generate_primes(max_limit): primes = [] for num in range(2, max_limit + 1): if is_prime(num): primes.append(num) return primes 这个函数将一一检查从2到max_limit的所有数字,利用is_prime函数确定它是否为质数。如果是质数,则将其...
质数生成的"高效方案" #Sieve of Eratosthenes#Code by David Eppstein, UC Irvine, 28 Feb 2002#http://code.activestate.com/recipes/117119/defgen_primes():"""Generate an infinite sequence of prime numbers."""#Maps composites to primes witnessing their compositeness.#This is memory efficient, as ...
# 修改自 sympy/sympy/ntheory/generate.py# 计算第 x 个素数defprime(x):a=2# 二分法下界b=int(...
# return a list contains prime numbers def takePrimesBy(flt): return takeWhile(PrimesIter(), flt) def isPrime(n): for i in takePrimesBy(lambda x: x < math.sqrt(n)): if n % i == 0: return False return True # generate N primes. ...
Python’ssympylibrary includes a function to generate prime numbers. This method is straightforward and leverages the power of existing libraries. Example: Here is a prime number program in Python. from sympy import primerange def print_primes(n): ...
这段代码首先定义了一个`is_prime`函数来检查一个数是否是素数。然后生成了200个随机整数并存放在`...
def generate_pseudo_random_number(prime): a = 5 # 选择的常数 b = 7 # 选择的常数 n = 20 # 生成随机数个数 random_numbers = [(a*x + b) % prime for x in range(1, n+1)] return random_numbers prime_number = 23 pseudo_random_numbers = generate_pseudo_random_number(prime_number)...
numbers=itertools.count(2)# generate primes foreverwhileTrue:#getthe first number from theiterator(always a prime)prime=next(numbers)yieldprime #thiscode iteratively builds up a chainof# filters...slightly tricky,but ponder it a bit numbers=filter(prime.__rmod__,numbers)forpiniter_primes():...
def is_prime(num): if num <= 1: return False for i in range(2, int(math.sqrt(num)) + 1): if num % i == 0: return False return True def generate_perfect_numbers(limit): perfect_numbers = [] p = 2 while True: if is_prime(2p - 1): ...