It can be seen that we are four times faster than scipy cdist, five times faster than xarray.corr, 60 times faster than forloop, 110 times faster than xr.apply_func and 200 times faster than numpy.corrcoef. Moreover, xarray and numpy can not return thep value. We can simply check the...
This tutorial will introduce the use of Python for statistical data analysis, using data stored as Pandas DataFrame objects. Much of the work involved in analyzing data resides in importing, cleaning and transforming data in preparation for analysis. Therefore, the first half of the course is comp...
Sacpy, an effecient Statistical Analysis tool for Climate and Meteorology data.Author : Zilu Menge-mail : zilumeng@uw.edugithub : https://github.com/ZiluM/sacpypypi : https://pypi.org/project/sacpy/Document: https://zilum.github.io/sacpy/version...
Plotly is a powerful plotting library for creating interactive charts & maps and rendering dynamic visualizations. Plotly lets you create line, box, & scatter plots, area, polar, bubble, & bar charts, error bars, multiple-axes, histograms, heatmaps, and subplots. From statistical charts...
Class Distribution: (class value 1 is interpreted as "tested positive for diabetes") Class Value Number of instances 0 500 1 268 10. Brief statistical analysis: Attribute number: Mean: Standard Deviation: 1. 3.8 3.4 2. 120.9 32.0 3. 69.1 19.4 4. 20.5 16.0 5. 79.8 115.2 6. 32.0 7.9 ...
Making informative visualizations (sometimes calledplots) is one of the most important tasks in data analysis. It may be a part of the exploratory process—for example, to help identify outliers or needed data transformations, or as a way of generating ideas for models. For others, building an...
Python for Data Analysis的创作者· ··· Wes McKinney作者 作者简介· ··· Wes McKinney 资深数据分析专家,对各种Python库(包括NumPy、pandas、matplotlib以及IPython等)等都有深入研究,并在大量的实践中积累了丰富的经验。撰写了大量与Python数据分析相关的经典文章,被各大技术社区争相转载,是Python和开源技术社...
本文在《The 8 Most Important Statistical Ideas of the Past 50 Years》文章的基础上,结合金融量化应用场景,带领大家一起探索过去半个世纪中涌现的一些至关重要的统计学思想,深入浅出地解析这些思想在金融量化领域的应用,并给出相应的Python应用示例。这...
验证研究假设(Hypothesis Testing):如t检验、ANOVA、回归分析。探索数据模式(Exploratory Data Analysis):如数据可视化、聚类分析。建立统计模型(Building Statistical Models):如机器学习、时间序列分析。选择合适的工具,不仅能让你的分析更加高效,还能增强论文的科学性、说服力和可复现性(Reproducibility)。那么,...
Leverage robust Python visualization libraries, such as Matplotlib and Seaborn, right in your Excel workbook for comprehensive data representation. Accomplish Deep Statistical Analysis Elevate your analysis using Python’s powerful libraries such as pandas and statsmodels. Accomplish comprehensive statistical ta...