GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
《利用Python进行数据分析·第2版》. Contribute to autobooooot/python_for_data_analysis_2nd_chinese_version development by creating an account on GitHub.
今天给大家推荐一本非常不错的 Python 数据分析入门系统教程《Python for Data Analysis(2nd)》,中文译为《利用 Python 进行数据分析 ·第 2 版》。 本书由 Python pandas 项目创始人Wes McKinney 亲笔撰写,详细介绍利用 Python 进行操作、处理、清洗和规整数据等方面的具体细节和基本要点。第 2 版针对 Python ...
首先,提取a这一列,清洗数据,由于浏览器数据是a这一列的其中一部分,因此把提取出的a这一列信息分隔开,提取其首项数据,也就是浏览器数据,然后用计数函数统计每个浏览器的数量。 browser=data['a'].dropna() browser_data=pd.Series([i.split()[0]foriinbrowser]) browser_counts=browser_data.value_counts()...
Python for Data Analysis的创作者· ··· Wes McKinney作者 作者简介· ··· Wes McKinney 资深数据分析专家,对各种Python库(包括NumPy、pandas、matplotlib以及IPython等)等都有深入研究,并在大量的实践中积累了丰富的经验。撰写了大量与Python数据分析相关的经典文章,被各大技术社区争相转载,是Python和开源技术社...
先从O'REILLY系列之《Python for Data Analysis》开始吧。持续更新。在向数据大牛靠近的路上慢慢披荆斩棘。 所有的练习code和思维导图都放在了GitHub中,思维导图来自软件Xmind,可以下载下来。每个板块都有code案例,或者下面链接中的Python-Code文件夹即可。 GitHub链接:戳这里 点开链接你会发现,一切都给你们准备的明...
Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more - pandas-dev/pandas
wesm/pydata-book: Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media https://github.com/wesm/pydata-book Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython: 9781491957660: Computer Science Books @ Amazon.com...
Book Data and Code Notebooks:https://github.com/wesm/pydata-book What's New in the 2nd Edition? Updated for Python 3.6 Updated for latest pandas (0.20.3) Revamped intro chapters including abridged Python language tutorial, and introductions to Jupyter and IPython ...
Data files and related material are available on GitHub. Use the Jupyter notebook and IPython shell for exploratory computing Learn basic and advanced features in NumPy Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape...