python import numpy as np def euler_to_rotation_matrix(z_angle, y_angle, x_angle): #绕Z轴旋转的矩阵 Rz = np.array([ [np.cos(z_angle), -np.sin(z_angle), 0], [np.sin(z_angle), np.cos(z_angle), 0], [0, 0, 1] ]) #绕Y轴旋转的矩阵 Ry = np.array([ [np.cos(y_a...
cout << (rotation_matrix.transpose() * Eigen::Vector3d(1,0,0)).transpose() << endl; //【2-1】: 欧拉角(机体坐标系旋转) Eigen::Vector3d euler_zyx(0, M_PI/6, M_PI/6); //【2-2】: 欧拉角-->>旋转矩阵 rotation_matrix = zyxToRotationMatrix(euler_zyx); //此转换结果与【1-1】...
# Calculates rotation matrix to euler angles # The result is the same as MATLAB except the order # of the euler angles ( x and z are swapped ). def rotationMatrixToEulerAngles(R) : assert(isRotationMatrix(R)) sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) singular ...
e_to_ix = cmath.exp(complex(0, x)) # 手动计算 cos(x) + i*sin(x) 以验证结果 cos_x = math.cos(x) sin_x = math.sin(x) cos_plus_i_sin = complex(cos_x, sin_x) return e_to_ix, cos_plus_i_sin 示例:计算 e^(i*pi) x = math.pi result = euler_formula(x) print(f"...
q = euler_to_quaternion(roll, pitch, yaw) # 将欧拉角转换为四元数 四元数与轴角的转换:轴角表示法基于绕着某个轴的旋转角度。要将四元数转换为轴角,我们可以使用以下代码: q = quaternion(0.70710678, 0.70710678, 0.0, 0.0) # 创建一个四元数 axis, angle = q.axisangle() # 将四元数转换为轴...
# convert rotation quaternion to Euler angle forces u_task[3:] = ko * q_r[1:] * np.sign(q_r[0]) NOTE: You will run into issues when the angle is crossed where the arm ‘goes the long way around’. To account for this, use q_r[1:] * np.sign(q_r[0]). This will make...
# 将四元数转换为旋转矩阵rotation_matrix=q.to_matrix() 异常处理 在使用numpy-quaternion库时,可能会遇到一些异常。例如,如果尝试创建一个四元数的虚部分量超出了[-1, 1]的范围,就会引发InvalidQuaternion异常。处理这些异常的方法是使用try-except语句: ...
bpy.data.objects[objName].rotation_euler = vclasscreate:"""Function Class for CREATING Objects"""defcube(objName): bpy.ops.mesh.primitive_cube_add(radius=0.5, location=(0,0,0)) act.rename(objName)defsphere(objName): bpy.ops.mesh.primitive_uv_sphere_add(size=0.5, location=(0,0,0))...
[objName].location = v # Declarative def rotation(objName, v): bpy.data.objects[objName].rotation_euler = v class create: """Function Class for CREATING Objects""" def cube(objName): bpy.ops.mesh.primitive_cube_add(radius=0.5, location=(0, 0, 0)) act.rename(objName) def sphere(...
\end{bmatrix}$$ In gerenal: three rotations taken about fixed axes yield the same final orientation as the same three rotations taken in opposite order about the axes of the moving frame. Axis-Angle与四元数 ,其中: $$\begin{align*} ...