drop_duplicates函数可以按某列去重,也可以按多列去重。具体语法如下: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 DataFrame.drop_duplicates(subset=None,keep='first',inplace=False) 代码解析: DataFrame:待去重的数据框。 subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中...
#默认根据所有的列,进行删除 newDF=df.drop_duplicates()#当然也可以指定某一列,进行重复值处理 newDF=df.drop_duplicates('id') 2、缺失值处理 dropna函数作用:去除数据结构中值为空的数据。 dropna() newdf=df.dropna() 代码语言:javascript 代码运行次数:0 运行 AI代码解释 from pandasimportread_csv df=...
df2.drop_duplicates('a') #返回删除重复记录后的结果 df2.drop_duplicates('a', keep='last') df2.drop_duplicates('a', keep=False) 此外,还可以传递列的列表以识别重复。 df2.duplicated(['a', 'b']) # 要求两列都重复 df2.drop_duplicates(['a', 'b']) 要按索引值删除重复项,使用Index.d...
df.drop_duplicates() 则通常用于数据去重,即剔除数据集中的重复值。官方解释很详细,下面做一些解读。 官方解释:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html#pandas.DataFrame.drop_duplicates DataFrame.drop_duplicates(subset=None, keep='first', inplace=Fa...
重复值处理,一般采用直接删除重复值的方式。在pandas中,可以用duplicated函数进行查看和drop_duplicates函数删除重复数据。 如下所示,可以通过duplicated函数查看重复的数据: 需要删除重复值时,可直接用drop_duplicates函数完成: 缺失值处理 缺失值与重复值一样,都是数据中比较常见的问题,必须进行处理才能进行下一步分析,保...
平时我们的操作中可能只是简单地将重复的行删除掉,不需要标记再筛选,太麻烦。那就使用drop_duplicates。 这样门店重复的就直接删除了。 跟duplicated一样,将列名放进括号里面可以作为判断重复的依据; 如果要保留后一个重复值,需要加参数keep='last'。 而如果想直接将原数据修改,需要加参数inplace=True。发布...
在Python中,drop_duplicates() 函数通常是用于 pandas 库中的 DataFrame 或 Series 对象,以删除重复的行或元素。下面是针对你的问题的详细回答: 解释drop_duplicates() 函数的作用: drop_duplicates() 函数用于删除 DataFrame 或 Series 中的重复行/元素,默认情况下保留第一次出现的行/元素。 列出drop_duplicates(...
drop_duplicates方法实现对数据框DataFrame去除特定列的重复行,返回DataFrame格式数据。 一、使用语法及参数 使用语法: DataFrame.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False) 参数: subset -- 指定特定的列 默认所有列 ...
默认情况下,drop_duplicates()会考虑所有列中的重复值。以下是一个简单的示例: importpandasaspd# 创建一个包含重复行的 DataFramedata = {'A': [1,2,2,3,4],'B': [5,6,6,7,8],'C': [9,10,10,11,12] } df = pd.DataFrame(data)# 删除重复行df_no_duplicates = df.drop_duplicates()print...