刚开始使用 NumPy 其实不太需要担心各种各样的函数眼花缭乱,也不需要担心自己需要死背这些内容,拥抱各类模块的文档(documentation)就可以快速理解模块中的各种函数功能。所以,这类的文档有时候也被称之为小抄(cheatsheet)或食谱(cookbook)。也就是说,合格的程序员必须要学会查找和阅读 NumPy 的官方文档。 NumPy 跟练...
info(np.eye) | View documentation for np.eye #Copying/sorting/reshaping#numpy数组复制、排序、变形 np.copy(arr) | Copies arr to new memory arr.view(dtype) | Creates view of arr elements with type dtype arr.sort() | Sorts arr arr.sort(axis=0) | Sorts specific axis of arr two_d_arr...
1importnumpy as np23a =np.array([4[1, 2, 3],5[4, 5, 6]6])78b =np.array([9[1, 2, 3],10[1, 2, 3]11])1213'''14维度一样的array,对位计算15array([[2, 4, 6],16[5, 7, 9]])17'''18a +b1920'''21array([[0, 0, 0],22[3, 3, 3]])23'''24a -b2526'''27a...
NumPy is the fundamental package for scientific computing with Python. Website: https://numpy.org Documentation: https://numpy.org/doc Mailing list: https://mail.python.org/mailman/listinfo/numpy-discussion Source code: https://github.com/numpy/numpy Contributing: https://numpy.org/devdocs/dev...
numpy编程算法python NumPy is a Python module designed for scientific computation. NumPy是为科学计算而设计的Python模块。 NumPy has several very useful features. NumPy有几个非常有用的特性。 Here are some examples. 这里有一些例子。 NumPy arrays are n-dimensional array objects and they are a core co...
(np.eye) | View documentation for np.eye Copying/sorting/reshaping np.copy(arr) | Copies arr to new memory arr.view(dtype) | Creates view of arr elements with type dtype arr.sort() | Sorts arr arr.sort(axis=0) | Sorts specific axis of arr ...
‘Docstring’ is the abbreviation for ‘documentation string’. Even though including a docstring in our function is optional, it is considered a good practice as it increases the readability of the code and makes it easy to understand. We use triple quotes around the string to write a ...
[0.44776361, 0.36145535, 0.380565 , 0.32035704], [0.61031541, 0.5521491 , 0.70684916, 0.05019113]]) Cool! You have NumPy library ready on your Python environment for matrix operations. For more readings on NumPy, visit NumPy documentation Website athttps://numpy.org/doc/....
{ 'Documentation': 'https://packaging.python.org/tutorials/distributing-packages/', 'Funding': 'https://donate.pypi.org', 'Source': 'https://github.com/pypa/sampleproject/', 'Tracker': 'https://github.com/pypa/sampleproject/issues', }, packages=['pagtest'], install_requires=['numpy>...
Wing's focus on interactive development works well for scientific and data analysis with Jupyter, NumPy, SciPy, Matplotlib, pandas, and other frameworks. The debugger's dataframe and array viewer makes it easy to inspect large data sets.