The following example of interaction shows how the methods are supposed to be called and what they are supposed to return. The only point which might not be obvious from that example is that in the sequence of diff commands output by the method OriginalNewFiles.pair_of_files.get_all_diff_c...
方法二:使用difflib模块比较 difflib模块提供了一些方法来比较两个文本文件的内容,并以可视化的方式输出差异。我们可以使用difflib模块中的Differ类来比较两个文本文件的内容。 importdifflibdefcompare_text_files(file1,file2):withopen(file1,'r')asf1,open(file2,'r')asf2:differ=difflib.Differ()diff=list...
def compare_text(cls, src_text, target_text): """ 比较给定的2个字符串 :param src_text: :param target_text: :return: """ d = difflib.Differ() return "".join(list(d.compare(src_text, target_text))) @classmethod def compare_text_to_file(cls, src_text, target_text, out_file):...
common_dirs:#两边文件夹都存在的子文件夹; common_files:#两边文件夹都存在的子文件; common_funny:#两边文件夹都存在的子文件夹; same_files:#匹配的文件; diff_files:#不匹配的文件; funny_files:#两边文件夹中都存在,但无法比较的文件; subdirs:#将common_dirs 目录映射到新的dircmp对象,格式为字典的类型。
使用具有适当属性的 unified_diff()进行比较示例:Python 3# Importing difflib import difflib with open('file1.txt') as file_1: file_1_text = file_1.readlines() with open('file2.txt') as file_2: file_2_text = file_2.readlines() # Find and print the diff: for line in difflib.uni...
common_funny: 2个目录中类型不同的内容,或os.stat()指出的有错误的地方(可以简单的理解有一个文件夹是123,一个文件也是123,那么就会出现在common_files中) 以上是相同的划分,我们还有不同的划分,示例如下: importfilecmp dc = filecmp.dircmp('filecmps','text')print(dc.same_files)print(dc.diff_files)pr...
You can open File -> Compare Files to diff two text files, or choose File -> Compare Directories to diff directories. In the case of directories, the tool will show the directory structure in a tree sidebar to the left, and highlight files red if they're in left directory only, green...
dc=filecmp.dircmp('filecmps','text')print(dc.same_files)print(dc.diff_files)print(dc.funny_files) 这里一一对应上面的公共,只是是不同的不是公共的。运行之后,效果如下: 最后还有一个属性:subdirs,用于将目录名映射到新的dircmp对象。示例如下: ...
difflib - (Python standard library) Helpers for computing deltas. ftfy - Makes Unicode text less broken and more consistent automagically. fuzzywuzzy - Fuzzy String Matching. Levenshtein - Fast computation of Levenshtein distance and string similarity. pangu.py - Paranoid text spacing. pyfiglet - ...
2、 下载python最新版本3.7.4,点击“Download”。3、 打开链接后,往下滑动,找到“Files”。选择适合...