薪资水平salary为定序变量, 因此将其字符型转化为数值型。 岗位是定类型变量, 对其进行one-hot编码。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # 数据转换 df['salary']=df['salary'].map({"low":0,"medium":1,"high":2})# 哑变量 df_dummies=pd.get_dummies(df,
importre rege=r'(\d+)-(\d+)K'defget_num(mystr):res=re.match(rege,mystr)result=(int(res.group(1))+int(res.group(2)))/2returnint(result)all_data['avg_salary']=all_data['salary'].apply(get_num) 招聘平均薪资排行 先来看看全国企业中,招聘薪资前十的都是哪些公司 从上面的统计可以...
多个字符串的格式化 #通过占位的形式,完成拼接name="安全通网"message="我是来自清华的:%s" % nameprint(message)#通过占位的形式,完成数字和字符串的拼接class_num=57avg_salary=16789message="python大数据学科,学习%s天,能挣%s元" % (class_num,avg_salary)print(message) 字符串,整数,浮点数等类型的格...
(\d+)') # 正则匹配,分割字符串 salary['avg'] = ((tmp[0].astype('int') + tmp[1].astype('int')) / 2) # 切记 相加记得加小括号 df3 = salary[salary['avg'] > 30] df3 = df3.drop(columns=['avg']) # 将以上三题提取出来的行按照相同列进行合并,汇总到一个数据框中 answer_2 ...
Top 10 Web and Mobile App Developer in Singapore | ISO Certified | Top 100 Singapore's fastest-growing companies 2024 [... view the full profile of Vinova] Singapore, Singapore 250 - 499 $30/hr $1,000 - $10,000 VIEW PORTFOLIO TechTIQ Solutions 5.0(44 reviews) Top Rated: 5-star Av...
employeegroupnamesalary 0 John Accounting John 70000 1 Jake Engineering Jake 80000 2 Jane Engineering Jane 120000 3 Suzi Management Suzi 65000 4 Chad Marketing Chad 90000 The redundant column can be dropped as needed using the drop() method. pd.merge(dept_df, emp_df, left_on='employee', ...
monthly_salary * portion_saved number_of_months += 1 if number_of_months % 12 == 0: print("第{}个月月末有{:,.0f}元存款".format(number_of_months, current_savings)) if current_savings >= down_payment: break if number_of_months % 6 == 0: monthly_salary = monthly_salary * (1...
cur.execute("SELECT COUNT(*), AVG(salary) FROM employees") count, average_salary = cur.fetchone()cur.close()conn.close() Example 9: Write a program to implement the Joins and Subqueries in the PostgreSQL database. import psycopg2DB_NAME = "intellipaat"DB_USER = "intellipaat"DB_PASS =...
df[['district','salary']].groupby(by='district').mean().sort_values('salary',ascending=False).head(1) 计算不同行政区(district),不同规模公司(companySize)出现的次数 # df.groupby(['district','companySize']).size() wechat.groupby('文章作者').filter(lambda x:x['阅读数'].mean()>5000...
||' '||last_name employee_name, hire_date, salary FROM employees ) a, ( SELECT manager_id, AVG(salary... (hire_date) 进行累计统计 -- 该平均值由当前员工和与之具有相同经理的前一个和后两个三者的平均数得来 SELECT manager_id, first_name||' '||last_name OCP 071 -129 争议题 last_...