df = pd.DataFrame(data) # 创建rolling对象并应用自定义函数 def calculate_rolling_difference(data): return data.diff() rolling_diff = df['value'].rolling(window=2).apply(calculate_rolling_difference) print(rolling_diff) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 在这个示例中,使用d...
b=pd.DataFrame(a,columns=['X','Y']) c=b.rolling(window=2).apply(lambdax:np.linalg.det(x)) 1. 2. 3. 4. 5. 6. 其实从上面的代码看起来很简单,想实现的就是对b进行滑动计算自定义函数 (window不一定非得是2,只是这里用了行列式函数,所以是2) 上面的代码肯定是运行不起来的,不然也不会费...
df = pd.DataFrame(data) # 创建rolling对象并应用自定义函数 def calculate_rolling_difference(data): return data.diff() rolling_diff= df['value'].rolling(window=2).apply(calculate_rolling_difference) print(rolling_diff) 在这个示例中,使用diff方法来计算差值,然后将其应用到rolling对象上。 计算滚动百...
import pandas as pd def get_under_rolling(df,window,user,name):df[name] =df[user].iloc[::-1].rolling(window=window).apply(lambda x:x[0]).iloc[::-1]returndfif__name__ =='__main__':df= pd.DataFrame({'a':[1,2,3,4,5],'b':[2,3,4,5,6]})# 把b列向下取值作为新的c...
我们用它来构建一个新的 DataFrame 我们将在其中调用 groupby ,同时通过 kwargs 传递关键字参数。 注意:我不必使用 stride_tricks.as_strided 但它很简洁,在我看来是合适的。 from numpy.lib.stride_tricks import as_strided as stride import pandas as pd def roll(df, w, **kwargs): v = df.values...
二、rolling() 1. 参数说明 DataFrame.rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None) window:表示时间窗的大小,有两种形式:1)使用数值int,则表示观测值的数量,即向前几个数据;2)也可以使用offset类型,这种类型较复杂,使用场景较少,此处暂不做介绍; ...
pandas.rolling_count(arg, window, freq=None, center=False, how=None) arg : DataFrame 或 numpy的ndarray 数组格式 window : 指移动窗口的大小,为整数 freq : center : 布尔型,默认为False, 指取中间的 how : 字符串,默认为“mean”,为down- 或re-sampling ...
from numpy_ext import rolling_apply def rolling_regression(s1,s2): reg=LR().fit(pd.DataFrame(s1),pd.DataFrame(s2)) return reg.coef_[0][0] BETA_temp=df.dropna() #需要首先把na删去,才可以进行rolling t2=rolling_apply(rolling_regression,50,BETA_temp.HS300_return.values,BETA_temp.指数y_re...
pandas.rolling_count(arg, window, freq=None, center=False, how=None) arg : DataFrame 或 numpy的ndarray 数组格式 window : 指移动窗口的大小,为整数 freq : center : 布尔型,默认为False, 指取中间的 how : 字符串,默认为“mean”,为down- 或re-sampling ...
apply方法 除了内置的滚动函数,还可以使用apply方法来应用自定义函数进行滚动计算。能够执行任何你需要的操作。 以下是一个示例: importpandasaspd# 创建示例数据框data={'value':[1,2,3,4,5]}df=pd.DataFrame(data)# 创建rolling对象并应用自定义函数defcustom_function(data):returndata.max()-data.min()result...