get_group方法接受一个键值作为参数,返回指定组的数据。下面是一个示例: importpandasaspd data={'Name':['Alice','Bob','Charlie','David','Eve'],'Gender':['F','M','M','F','F'],'Age':[25,30,35,40,45]}df=pd.DataFrame(data)grouped=df.grou
51CTO博客已为您找到关于python dataframe groupby get_group的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及python dataframe groupby get_group问答内容。更多python dataframe groupby get_group相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人
Pandas groupby:拆分-应用-合并的过程 本质上,groupby指的是涉及以下一个或多个步骤的流程: Split拆分:将数据拆分为组 Apply应用:将操作单独应用于每个组(从拆分步骤开始) Combine合并:将结果合并在一起 Split数据集 拆分数据发生在groupby()阶段。按支出类别拆分数据,结果实际上是一个DataFrameGroupBy对象。如果只是将...
df.groupby('key1').get_group('a')#得到某一个分组#运行前,重置下df 我运行前 前面的df都改动了# 面向多列的函数应用--Agg() # 一次性应用多个函数计算 # #有这么一个数据 #df =DataFrame({'a':[1,1,2,2],'b':np.random.rand(4),'c':np.random.rand(4),'d':np.random.rand(4) })...
group_a = grouped.get_group('A') print(group_a) 三、实例应用 为了更好地理解groupby后的分开操作,下面通过一个具体的实例进行说明。 假设我们有一个包含产品销售数据的DataFrame,我们希望根据产品类别进行分组,并计算每个类别的总销售额。 import pandas as pd ...
将资料进行群组化后,得到了DataFrameGroupBy物件,我们就可以使用get_group()方法(Method),指定Job(职业)栏位中的不同群组,来检视其中的所有栏位,如下范例: 截取部分执行结果 以上执行结果,就是就业人员(Employed)群组的所有栏位资料。如果想要检视学生(Student)群组,将第8行的Employed替换成Student即可,非常的方便。
import pandas as pd df = pd.read_excel(r'C:\Users\XXXXX\Desktop\pandas练习文档.xlsx',sheet_name=4) # print(df) #根据制造商分组 group_df = df.groupby(by='制造商') print(group_df)【注:分组后的结果是一个DataFrameGroupBy对象,可以用list()转化后查看】 ...
Pandas groupby:拆分-应用-合并的过程 本质上,groupby指的是涉及以下一个或多个步骤的流程: Split拆分:将数据拆分为组 Apply应用:将操作单独应用于每个组(从拆分步骤开始) Combine合并:将结果合并在一起 Split数据集 拆分数据发生在groupby...
Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, dropna=True) 二、groupby实操 1.构造测试数据集 importpandasaspdimportnumpyasnp name = ['老王','吕布','孙悟空'] df = pd.DataFrame({'name':[name[x]forxinnp.random.randint(0,len(name),9)],'sal...
...针对一些常用的功能,groupby提供了一些函数来直接操作DataFrameGroupBy对象, 比如统计个数,求和,求均值等,示例如下 # 计算每个group的个数 >>> df.groupby('x...()) y 0 0 1 2 2 -2 3 3 4 3 5 8 pandas中的groupby功能非常的灵活强大,可以极大提高数据处理的效率。