首先,我们需要导入pandas库在。导入pandas库之后,我们可以通过调用DataFrame对象的groupby()方法来使用groupby。groupby()方法的基本语法如下:grouped = df.groupby(by=None, axis=0, level=None, as_index=False, sort=True, group_keys=True, squeeze=False, observed=False)参数解释 by参数用于指定要进行分组的...
<class 'pandas.core.groupby.generic.DataFrameGroupBy'> <pandas.core.groupby.generic.DataFrameGroupBy object at 0x127112df0> 1. 2. grouped的类型是DataFrameGroupBy,直接尝试输出,打印是内存地址,不太直观,这里写一个函数来展示(可以这么写的原理,后面会介绍) def view_group(the_pd_group): for name, gr...
创建一个dataFrame例子: importnumpyasnpimportpandasaspddefGroupbyDemo():df=pd.DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5),'data2':np.random.randn(5)})print(df)if__name__=='__main__':GroupbyDemo() 打...
1.在dataframe中使用apply方法,调用自定义函数对数据进行处理 2.可以使用astype函数对数据进行转换 3.可以使用map函数进行数据转换 二、数据分组运算 1.使用groupby方法进行分组计算,得到分组对象GroupBy 2.语法为df.groupby(by=) 3.分组对象GroupBy可以运用描述性统计方法, 如count、mean 、median 、max和min等 三、...
大家都知道数据库有groupby函数,今天给大家讲讲dataframe的groupby函数。 groupby函数 还是以上文的数据为例子,进行讲解,首先读入数据,通过groupby聚合数据。(该数据为简书it互联网一段时间的文章收录信息) 代码语言:javascript 复制 importpandasaspdimportpymysql ...
import pandas as pd df = pd.read_excel(r'C:\Users\XXXXX\Desktop\pandas练习文档.xlsx',sheet_name=4) # print(df) #根据制造商分组 group_df = df.groupby(by='制造商') print(group_df)【注:分组后的结果是一个DataFrameGroupBy对象,可以用list()转化后查看】 ...
一、groupby的聚合函数 首先创建一个dataframe对象:【例8】使用groupby聚合函数对数据进行统计分析。 Python 复制代码 9 1 2 3 df=pd.DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],
df.groupby('key1').get_group('a')#得到某一个分组#运行前,重置下df 我运行前 前面的df都改动了# 面向多列的函数应用--Agg() # 一次性应用多个函数计算 # #有这么一个数据 #df =DataFrame({'a':[1,1,2,2],'b':np.random.rand(4),'c':np.random.rand(4),'d':np.random.rand(4) ...
【python】DataFrame.groupby()聚合,分组级运算 pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要 等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分组摘要统 计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样...