使用ix[]进行基于位置和标签的选取:例如df.ix[row_index, col_label]表示选取第row_index行,列标签为col_label的数据。三、FilterFilter函数用于根据指定条件对DataFrame进行过滤,返回符合条件的子集。它接受一个布尔系列作为参数,通过将条件表达式应用于DataFrame的某一列或多列来创建布尔系列。例如: 过滤某一列的值...
@register.filter 代替 register.filter("过滤器名","函数名") 1. 2. 3. 如果使用@register.filter进行注册自定义的过滤器,并且没有传递任何参数,那么默认的过滤器名和函数名是相同的,当然,也可以进行修改,只需要在@register.filter("过滤器名"),此时的过滤器名就更改了,就可在DTL模板中使用自定义的过滤器了...
为了便于后面的操作,首先创建一个示例DataFrame。以下是一个包含学生信息的简单表格: data={'姓名':['Alice','Bob','Charlie','David','Eva'],'年龄':[23,22,23,21,22],'专业':['数学','物理','数学','化学','物理']}df=pd.DataFrame(data)print(df) 1. 2. 3. 4. 5. 6. 7. 8. 运行...
df = pd.DataFrame(np.array(([1,2,3],[4,5,6])), index=['mouse','rabbit'], columns=['one','two','three'])# 过滤列df.filter(items=['one','three']) df.filter(['one'])# 正则df.filter(regex='e$', axis=1)# 以e结尾df.filter(regex='e$', axis=0) df.filter(regex='Q...
na_filter=True 的设置来对NA值进行过滤或者识别。 删除缺失值 使用pd.DataFrame.dropna()方法完成缺失值的删除: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 In[17]:pd.DataFrame.dropna Out[17]:<functionpandas.core.frame.DataFrame.dropna(self,axis:'Axis'=0,how:'str'='any',thresh=None,subse...
this object.DataFrame.select_dtypes([include, exclude])根据数据类型选取子数据框DataFrame.valuesNumpy的展示方式DataFrame.axes返回横纵坐标的标签名DataFrame.ndim返回数据框的纬度DataFrame.size返回数据框元素的个数DataFrame.shape返回数据框的形状DataFrame.memory_usage([index, deep])Memory usage of DataFrame ...
Python pandas.DataFrame.filter函数方法的使用 Pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境...
Python数据框是一个由行索引、列索引和值构成的数据结构,是数据分析中的核心结构。以下是关于Python DataFrame的详细解答:构成:行索引:用于唯一标识每一行。列索引:用于唯一标识每一列。值:存储在数据框中的实际数据。主要功能:创建副本:使用df2 = df1.copy可以创建数据框的副本。数据类型管理:...
apply()将一个函数作用于DataFrame中的每个行或者列 df = df2.filter(regex='[^a-z]', axis=1).apply(lambda x: x*2) Applymap() 将函数做用于DataFrame中的所有元素(elements) 例如,在所有元素前面加个字符A def addA(x): return "A" + str(x) df.applymap(addA) ...
DataFrame 一个表格型的数据结构,类似于 Excel 、SQL 表,既有行标签(index),又有列标签(columns),它也被称异构数据表,所谓异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等。 DataFrame 的每一行数据都可以看成一个 Series 结构,只不过,DataFrame 为这些行中每个数据值增加了一个...