DataFrame.drop(labels=None,axis=0,index=None,columns=None,level=None,inplace=False,errors='raise')# axis{0 or ‘index’, 1 or ‘columns’}, default 0 drop函数的axis默认为0,表示删除行。 2、mean均值函数 DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) ...
下图代表在DataFrame当中axis为0和1时分别代表的含义: axis参数作用方向图示 另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释: 轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿...
下图代表在DataFrame当中axis为0和1时分别代表的含义: axis参数作用方向图示 另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释: 轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。 所以问题当中第一个列子 df.mean(axis=1...
下图代表在DataFrame当中axis为0和1时分别代表的含义: axis参数作用方向图示 另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释: 轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。 所以问题当中第一个列子 df.mean(axis=1...
axis概述 在Python中,axis参数用于确定DataFrame操作的方向,可以是行或列。具体来说,axis=0表示沿行方向操作,而axis=1表示沿列方向操作。这个概念通过一些简单的示例能够更好地理解。下面的图示可以帮助理解axis参数的作用方向:\n\n\n\n \n\n\n\n 操作示例 当我们对DataFrame进行操作时,如选择、过滤或计算...
DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) 1. 参数解释 value:填充的值,可以是具体某个值,也可以用字典形式,或者函数计算出来的值等 axis:填充的方向,axis=0(行),默认;axis=1(列) ...
DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引 行索引,表明不同行,横向索引,叫index,0轴,axis=0 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1 DataFrame属性 shape – 形状 index – 行索引 columns – 列索引 ...
使用0值表示沿着每一列或行标签\索引值向下执行方法 使用1值表示沿着每一行或者列标签模向执行对应的方法 下图代表在DataFrame当中axis为0和1时分别代表的含义: ** axis参数作用方向图示 另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释: ...
DataFrame.drop(self,labels = None,axis = 0,index = None,columns = None,level = None,inplace = False,errors ='raise' ) 通过指定标签名称和轴,或者直接指定索引或列名称来直接删除行或列。 常用参数含义: labels : 标签表示索引或列 axis: 指定轴,axis = 0(删除行) axis = 1(删除列) ...