DataFrame 拆分-应用-合并 split-apply-combineapply() 方法是针对某些行或列进行操作的,applymap()方法是针对所有元素进行操作的 DataFrame 对象,apply 函数的语法如下: DataFrame.apply(func, axis=0, raw=False, result_type=None, args=(), **kwds) Series 对象,apply 函数的语法如下: Series.apply(func, ...
Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns(``axis=1``). 传递给函数的对象是Series对象,其索引是DataFrame的索引(axis=0)或DataFrame的列(axis=1)。 By default (``result_type=None``), the final ret...
经过查看引用,发现apply函数可以对dataframe和Series类型使用,此处我们查看dataframe的apply: defapply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds):""" Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either ...
df['new_column'] = df['column'].apply(function) 其中,df是DataFrame对象,'new_column'是要添加到DataFrame中的新列名,'column'是要对应用函数的列名,function是要应用的函数。 通过使用.apply方法,可以避免使用for循环对每个数据项进行迭代处理。相比之下,使用.apply方法更加简洁高效。另外,使用.apply方法还可以...
apply函数是`pandas`里面所有函数中自由度最高的函数。该函数如下: DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds) 该函数最有用的是第一个参数,这个参数是函数,相当于C/C++的函数指针。 这个函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把...
df = pd.DataFrame([['foo', 'x'], ['bar', 'y']], columns=['A', 'B']) A B 0 foo x 1 bar y 当涉及到数据帧时,我知道如何将单个参数函数与 Apply 一起使用,如下所示: def some_func(row): return '{0}-{1}'.format(row['A'], row['B']) df['C'] = df.apply(some_fu...
当然可以,apply 函数是 Pandas 库中一个非常强大且灵活的工具,它允许我们对 DataFrame 的行或列应用自定义函数。这个自定义函数不仅可以是我们自己定义的,也可以是 Python 其他库中的函数。 1. apply 函数的基本功能 apply 函数的基本语法如下: python DataFrame.apply(func, axis=0, broadcast=False, raw=False,...
DataFrame['columnName'].apply(function) 直接在apply中运用函数,可以使用python内置函数也可以使用自定义函数,如data.loc[:,'A'].apply(str),将A列所有数据转为字符串;data.loc[:,'A'].apply(float),将A列所有数据转为浮点型等等; 所有示例使用以下数据集: data = pd.DataFrame([[1,2],[3,4],[5,...
【python床头书系列】pandas.DataFrame.apply pandas.DataFrame.map用法示例权威详解区别 源自专栏《Python床头书、图计算、ML目录(持续更新)》 DataFrame.apply 语法 DataFrame.apply(func,axis=0,raw=False,result_type=None,args=(),by_row='compat',engine='python',engine_kwargs=None,**kwargs)` ...
df['grade1'] = df['score1'].apply(grade) df['grade2'] = df['score2'].apply(grade) print(df) ``` 这段代码创建了一个包含学生信息的DataFrame,并定义了一个函数grade,该函数将分数转换成等级。然后,使用apply方法将grade函数应用于列score1和score2,结果存储在新的列grade1和grade2中。