pivot_table函数是pandas库中的函数,调用首先需要加载pandas库。 其功能相当于excel中的数据透视表。 其基本调用语法如下: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 importpandasaspd pd.pivot_table(data:'DataFrame',values=None,index=None,columns=None,aggfunc:'AggFuncType'='mean',fill_value=None,...
pt_cache = wb.PivotCaches().Create(SourceType=constants.xlDatabase, SourceData=SrcData) pt = pt_cache.CreatePivotTable(TableDestination=StartPvt, TableName="PivotTable1") 到此,可以在excel中看到如下效果。 配置行列字段 ## 添加行字段 pt.AddFields(RowFields=["部门","年龄"]) ##添加列字段 pt....
创建透视表的pivot_table()函数里面的参数设置很多,学习它最有效的方式是每一步设置一个参数,检查结果是否符合预期。 先从最简单的语法开始,只设置index='Account',通用语法如下: pd.pivot_table(df, index=label_str) 代码语言:javascript 代码运行次数:0 运行 AI代码解释 pd.pivot_table(df,index="Account") ...
Python数据透视功能之 pivot_table()介绍 pivot_table pivot()函数没有数据聚合功能,要想实现此功能,需要调用Pandas包中的第三个顶层函数:pivot_table(),在pandas中的工程位置如下所示: pandas | pivot_table() 如下,构造一个df实例: 调用如下操作: 参数index指明A和B为行索引,columns指明C列取值为列,聚合函数...
1. pivot_table函数简介 pivot_table函数的基本语法如下: pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True) 主要参数说明: ...
二、如何使用pivot_table 首先读取数据,数据集是火箭队当家球星James Harden某一赛季比赛数据作为数据集进行讲解。数据地址。 先看一下官方文档中pivot_table的函数体:pandas.pivot_table - pandas 0.21.0 documentation pivot_table(data, values=None, index=None, columns=None,aggfunc='mean', fill_value=None,...
1.1 pivot_table参数列表: pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc=‘mean’, fill_value=None, margins=False, dropna=True, margins_name=‘All’, observed=False, sort=True) 同样可以写成: data.pivot_table(’ data列名’,index,columns,aggfunc…) ...
使用Pandas的pivot_table()函数,我们可以轻松创建数据透视表。以下是创建一个基本数据透视表的示例: importpandasaspd# 创建示例数据集data={"customer":["Alice","Bob","Charlie","David","Edward","Alice"],"sales":[200,150,300,400,250,100],"month":["July","July","July","August","August","...
理解pivot_table参数: pandas的pivot_table方法是创建数据透视表的核心。该方法的签名如下: DataFrame.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')
在Pandas 中,实现数据透视表是使用的pivot_table()这个方法,首先还是放个官方文档,防止有同学找不到。 官方文档地址:https://pandas.pydata.org/pan...。 再看下 pivot_table 的语法: pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, ...