topToken=opStack.pop()else:whileopStackand\ (prec[opStack[-1]] >=prec[token]): postfixList.append(opStack.pop()) opStack.append(token)whileopStack: postfixList.append(opStack.pop())return''.join(postfixList) s=input()print(infixToPostfix(s)) 加入计算功能: View Code 4. 错误检测和报...
遍历结束后依次弹出栈内元素,最后返回后缀表达式的字符串形式。 1definfix_to_postfix(expr):2globalSIGN3out =[]4s =Stack()5foriinexpr:6ifiinSIGN.keys():7#Pop all high level sign except left bracket8whiles.top():9ifSIGN[s.top()] < SIGN[i]ors.top() =='(':10break11out.append(s.pop...
逆波兰表达式的本质是将一个中缀表达式(infix),i.e.操作符(operator)前后连接两个操作数(operand)(e.g. (0 /a+ 0 / 1+ 0/3 + 0/a + b * 2.5)* b^(-2))变为后缀表达式(postfix),i.e.,操作符在操作数的后面 **(e.g. ,0,a,/,0,1,/,+,0,3,/,+,0,a,/,+,b,2.5,+,b,0,2,...
广义上infix是给user看的,prefix和postfix很大程度上是给编译器看的。具体地,对于单操作符运算,其实用的是prefix(比如取非),当然常见的prefix/postfix就是++、--,但是python中没有这个操作符。 有用 回复 查看全部 1 个回答 推荐问题 字节的 trae AI IDE 不支持类似 vscode 的 ssh remote 远程开发怎么办? 尝...
postfixList = []tokenList = infixexpr.split()for token in tokenList:if token in string.ascii_uppercase:#数字 postfixList.append(token)elif token == '(':#左括号⼊栈 opStack.append(token)elif token == ')':#右括号 topToken = opStack.pop()while topToken != '(':postfixList.append(...
You can think of them as functions that take advantage of a more compact prefix and infix syntax. Note: Python does not include postfix operators like the increment (i++) or decrement (i--) operators available in C. Bitwise operators look virtually the same across different programming ...
Convert the following values to binary using “divide by 2.” Show the stack of remainders. 17 45 96 Convert the following infix expressions to prefix (use full parentheses): (A+B)(C+D)(E+F) A+((B+C)*(D+E)) A*B*C*D+E+F Convert the above infix expressions to postfix (...
Infix_to_Postfix.py Insert_operation_on_Linked_List.py Job_scheduling.py JsonParser.py Kilometerstomile.py LETTER GUESSER LICENSE.md Letter_Counter.py List.py Luhn_Algorithm.py ML House Prediction.ipynb Mad Libs Generator.py Memory_game.py Merge_linked_list.py MobiusFunctio...
Balanced Parentheses 平衡括号 Dijkstras Two Stack Algorithm Dijkstras 两栈算法 Evaluate Postfix Notations 评估后缀符号 Infix To Postfix Conversion 中缀到后缀转换 Infix To Prefix Conversion 中缀到前缀转换 Next Greater Element 下一个更大的元素 Postfix Evaluation 后缀评估 Prefix Evaluation 前缀评估 Stack 堆...
Balanced Parentheses 平衡括号 Dijkstras Two Stack Algorithm Dijkstras 两栈算法 Evaluate Postfix Notations 评估后缀符号 Infix To Postfix Conversion 中缀到后缀转换 Infix To Prefix Conversion 中缀到前缀转换 Next Greater Element 下一个更大的元素 Postfix Evaluation 后缀评估 Prefix Evaluation 前缀评估 Stack 堆...