defrec_dfs(G,s,S=None):ifSisNone:S =set() S.add(s)foruinG[s]:ifuinS:coontinue rec_dfs(G,u,S) 迭代版的深度优先搜索 : defiter_dfs(G,s): S,Q=set(),[] Q.append(s)whileQ: u=Q.pop()ifuinS:continueS.add(u) Q.extend(G[u])yiel
一. 知识点介绍 深度优先搜索DFS:类似于二叉树的先根遍历 广度优先搜索BFS:类似于二叉树的层次遍历 二.算法实现 广度优先遍历(BFS) 1.策略:从起点开始,遍历其邻接的节点,由此不断向外扩散 2.步骤: 如图所示,我们可以看到如果从上输入5*5的迷宫矩阵的右下角点A(0,0)出发,假设终点为点o(3,5),且合法走法...
right, depth+1) Traversal(pRoot) # 上面那部分和打印二叉树题目是一样的,接下来进行一个判断奇数层取反转的操作 for i, v in enumerate(res): if i % 2 == 1: v.reverse() return res 二叉树的深度 题目描述:输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树...
dfs(root.right, row + 1, col + 1, result) 代码(Go) /** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func verticalTraversal(root *TreeNode) [][]int { // 先用 dfs 收集所有结点的坐标和值 var result [...
defcheck(li, reverse=False):ifreverse ==False:foriinrange(len(li) -1):ifli[i] > li[i +1]:returnFalseelse:returnTrueelifreverse ==True:foriinrange(len(li) -1):ifli[i] < li[i +1]:returnFalseelse:returnTrue 冒泡排序 # 冒泡排序importrandomdefbubble_sort(li:list):foriinrange(le...
# write code here dummy = pNode while dummy.next: dummy = dummy.next self.result = [] self.midTraversal(dummy) return self.result[self.result.index(pNode) + 1] if self.result.index(pNode) != len(self.result) - 1 else None ...
# DFS traversal self.DFSUtil(v,visited) # Driver code # Create a graph given in the above diagram g = Graph() g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(1, 2) g.addEdge(2, 0) g.addEdge(2, 3) g.addEdge(3, 3) ...
def dfs(i: int) -> int: if i <= 1: return 1 return dfs(i-1) + dfs(i-2) return dfs(n) # 递推 class Solution: def climbStairs(self, n: int) -> int: fo = f1 = 1 for _ in range(2, n+1): new_f = f1 + f0 ...
题目链接:https://leetcode-cn.com/problems/binary-tree-level-order-traversal-ii/ 题意: 给定一个二叉树,返回其节点值自底向上的层序遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历) 例如: 给定二叉树 [3,9,20,null,null,15,7], 方法:广搜,在leetcode102的基础上反转一下就可以了...
# to print DFS traversal self.DFSUtil(v,visited) # Driver code # Create a graph given # in the above diagram g=Graph() g.addEdge(0,1) g.addEdge(0,2) g.addEdge(1,2) g.addEdge(2,0) g.addEdge(2,3) g.addEdge(3,3) ...