Code Generator Code Explainer Code Enhancer Comment Generator Unit Test Generator Convert from Go to Python New Chat Guest usage: 3 / 3 Get More Choose a Model Llama 4 Maverick Cost: 1 credit Llama 4 Maverick is a powerful and efficient AI model, especially for coding and ...
Keep the learning going with our AI-powered Code Explainer. Try it now! View Full Code Assist My Coding Sharing is caring! Read Also How to Make a Markdown Editor using Tkinter in Python Learn how you can create a markdown editor using the Tkinter library and regular expressions in ...
endpoint_name ='text_explainer_endpoint'response = sagemaker_client.create_endpoint( EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name, ) After the status of the endpoint becomesInService, invoke the endpoint. The following code sample uses a test record as follows: ...
Let our AI-powered Code Explainer demystify it for you. Try it out!Have you ever wanted to download all images on a certain web page? In this tutorial, you will learn how you can build a Python scraper that retrieves all images from a web page given its URL and downloads them using...
Python Code Generator Python Code Assistant Python Code Explainer Python Code Enhancer Python Comment Generator Python Unit Test Generator Python Code Converter Useful Code Snippets Navigation Home Tutorials Write with Us About Us Contact Us Useful Links Privacy Policy Advertise AI-...
The chapter shows how to create a model-agnostic explainable AI Python program that can explain the results of random forests, k-nearest neighbors, gradient boosting, decision trees, and extra trees.The Python program creates a unique LIME explainer with visualizations no matter which ML model ...
同时,为了简单化,Python 也提供了一种“在编码时就进行检查(check as you code)”的方法,进而有效地减轻了测试代码的工作量。③预建库:Python 有着 100 多种预建库,可用于实现各种机器学习和深度学习的算法。因此,用户每次在数据集上运行算法时,只需通过单个命令去安装和加载必要的程序包即可。其中,比较...
(x_test) # if you used the PFIExplainer in the previous step, use the next line of code instead # global_explanation = explainer.explain_global(x_train, true_labels=y_train) # sorted feature importance values and feature names sorted_global_importance_values = global_explanation.get_ranked...
代码语言:javascript 代码运行次数:0 运行 AI代码解释 # cython: language_level=3 import torch import torch.nn as nn import torch.nn.functional as F import dgl from dgl.data import CoraGraphDataset from dgl.nn import GraphConv # 定义 GCN 模型class GCN(nn.Module): def __init__(self, in_fe...
explainerdashboard: explainerdashboard是一个交互式的模型解释工具,可以帮助用户更好地理解和解释机器学习模型的预测结果和特征重要性。https://github.com/oegedijk/explainerdashboard TPOT: TPOT是一个自动化机器学习工具,使用遗传算法进行模型选择和超参数优化,以生成最佳的机器学习管道。https://github.com/Epistas...