print(np.argmax(a, axis=1)) 其中np.argmax(a, axis=0)的含义是a[i][0],a[i][1],a[i][2],a[i][3]中最大值的索引。 首先比较是a[0][0],a[0][1],a[0][2],a[0][3],可以得出最大值得下标为a[0][1] ,所以输出数组的第一个值为1. 然后比较的是a[0][0],a[1][1],a[2...
这里讨论的axis主要是numpy中定义的axis,pandas基于numpy,保留了numpy对axis的用法。 1、drop删除函数 DataFrame.drop(labels=None,axis=0,index=None,columns=None,level=None,inplace=False,errors='raise')# axis{0 or ‘index’, 1 or ‘columns’}, default 0 drop函数的axis默认为0,表示删除行。 2、mea...
axis=1:沿着 列(cols) 的方向跨 行 即当axis=1时,我们沿着每一行或者列标签向右执行(水平方向) 进阶:多维 axis的实际含义是根据axis指定的维度进行连接,如矩阵m1的维度为(2,3), 那么axis=0就代表了第一个维度‘2’。 因此,将m1和m2按照第一个维度进行连接,得到的新的矩阵就是将第一维度进行相加,其余维度...
其实这里也可以验证自己计算所得是否正确,例如数组的shape=[2,2,3] ,则axis=0,计算得到的数组的维度为[2,3](就是去掉指定维度后的数组的shape),若axis=1,计算得到的数组的维度为[2,3],若axis=2,计算得到的数组的维度为[2,2] 若指定了axis=1,则沿着第二个维度变化的方向进行计算, 此例中第二个维度...
官方对于axis=0和axis=1的解释是轴,也就是坐标轴。坐标轴是有方向的,而行和列是没有方向的 1表示横轴(水平),方向从左到右; 0表示纵轴(垂直),方向从上到下。 当axis=1时,数组的变化是横的,而体现出来的是列的增加或者减少。 其实axis的重点在于方向,而不是行和列。具体到各种用法而言也是如此。当axis=...
使用pandas的时候,会经常在各种方法中看到axis参数;比如以下两个: 当调用df.sum(axis=1),我得到了按行计算的和,不信你看: 当调用df.dropna(axis=1,how='any'),我得到了删除一列后的数据,你敢信?! 这,,,发生了什么??? 之前一直被这个问题搞得欲仙欲死,每次用的时候沉思良久,不得其意,我也不知道我是...
【背景】:做数据分析时候,经常要按行或者按列整合数据,需要使用axis=0或者axis=1。 【问题】:axis=0或者asix=1,代表行还是列,经常...
df[isNA.any(axis=1)]df[isNA[['key']].any(axis=1)]df[isNA[['key','value']].any(axis=1)]df.fillna('未知')#直接删除空值 newDF=df.dropna() 3、空格值处理 strip函数作用:清除字符型数据左右的空格。 与R中的trim函数用法一样 newname=df["name"].str.strip() ...
[1 2 3 4] """ 对数组使用均值函数mean() """ print(a.mean(axis=1))#计算同一列下,每一行各数字的平均值 >>> [ 2.5 6.5 10.5] print(a.mean(axis=0))#计算同一行下,每一列各数字的平均值 >>> [5. 6. 7. 8.] import numpy as np ...
fig.update_layout(xaxis_showgrid=False, yaxis_showgrid=False)无用的多余框线 使用空白。在任何介质中,空间都是有限的。将数据装箱会占据页面上可用于展示数据的宝贵空间。右边和顶上的线应删除,但有时左边和底下的线很漂亮。# mpl ax.spines['right'].set_visible(False)ax.spines['top'].set_visible(...