self.assertEqual(8,add(3,5),'错误') def test_cheng(self): self.assertEqual(15,cheng(3,5),'错误') if __name__ == '__main__': unittest.main()
# 有问题的代码if0.1+0.2==0.3:# 这是错误的!print("Equal")# 解决方案tolerance=1e-10ifab...
在Python中,我们可以使用assert关键字来实现断言。 以下是一个使用断言来确保两个浮点数相等的示例: defassert_floats_equal(a,b,tolerance=1e-9):assertare_floats_equal(a,b,tolerance),f"{a}and{b}are not equal within tolerance{tolerance}"# 示例a=0.1+0.2b=0.3assert_floats_equal(a,b)# 正常执行,...
Absolute tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also --- assert_series_equal : Equivalent method for asserting Series equality. DataFram...
在程序设计过程中,对于不需要改变且不能改变的字面值,称为常量。 变量与常量相反, 变量的值 ...
Absolute tolerance for inexact checking. nans_compare_equal Consider NaN values to be equal. categorical_as_str Cast categorical columns to string before comparing. Enabling this helps compare columns that do not share the same string cache. See Also --- assert_series_equal assert_frame_not_equa...
self.assertEqual(formatted_string, '1.2346') allieswcommentedDec 17, 2024 The failures are related to the rounding behavior of floating-point numbers, specifically: Test test_summary: The failure is because Python is formatting 1.2345999999999999 as 1.2346 (but the expected output is 1.2346). ...
assert(x.size() == 4); // variables AD<double> x1 = x[0]; AD<double> x2 = x[1]; AD<double> x3 = x[2]; AD<double> x4 = x[3]; // f(x) objective function fg[0] = x1 * x4 * (x1 + x2 + x3) + x3;
PEP 485 adds the math.isclose() and cmath.isclose() functions which tell whether two values are approximately equal or "close" to each other. Whether or not two values are considered close is determined according to given absolute and relative tolerances. Relative tolerance is the maximum allowe...
bigger the p-value the more reason we assert that there is a unit root '''deftestStationarity(ts): dftest = adfuller(ts)# 对上述函数求得的值进行语义描述dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])forkey,valuein...