ARIMA模型(英语:Autoregressive Integrated Moving Average model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。“差分”一...
显然,ARIMA模型同样无法解释时间序列中的条件波动性。到这一步,时间序列的基本模型和建模步骤基本上大家已经熟知,下面利用模型的forecast()方法进行预测。 # 对沪深300收益率未来20天进行预测 n_steps = 20 #分别设置95%和99%的置信度 f, err95, ci95 = best_mdl.forecast(steps=n_steps) _, err99, ci99 ...
# 6 建立模型和预测 model = ARIMA(data, (p,1,q)).fit() #给出一份模型报告 model.summary2() #作为期5天的预测,返回预测结果、标准误差、置信区间。 model.forecast(5) 大学干货派 只为大学生提供干货内容
这是Statsmodels自从0.11版本新独立的模块,其原来的模块为statsmodels.tsa.arima_model.ARIMA,二者在功能上都实现了arima模型,并且具有相同的属性和方法名,其返回值均为ARIMAResults对象,通过该对象的predict()、forecast()得到预测值。值得注意的是新旧模块的方法的传入参数和返回值类型不太相同,因此使用时需要注意。其官...
# 初始化滚动预测predictions=[]fortinrange(len(test)):model=ARIMA(train,order=(5,1,0))# 在每一步使用训练集训练模型model_fit=model.fit()pred=model_fit.forecast(steps=1)# 预测下一条数据predictions.append(pred[0])# 存储预测值train=train.append(test.iloc[t])# 将真实值添加到训练集中 ...
model = ARIMA(history, order=(1,1,0)) model_fit = model.fit() yhat = model_fit.forecast()[0] predictions.append(yhat) history.append(y[0]) 在处理时间序列数据时,由于依赖于先前的观测值,滚动预测通常是必要的。执行此操作的一种方法是在收到每个新观测值后重新创建模型。
ARIMA 时间序列模型简介 时间序列是研究数据随时间变化而变化的一种算法,是一种预测性分析算法。它的基本出发点就是事物发展都有连续性,按照它本身固有的规律进行。ARIMA(p,d,q)模型全称为差分自回归移动平均模型 (Autoregressive Integrated Moving Average Model,简记 ARIMA). 是比较成熟且简单的时间预测模型之一。其...
最好的模型是差分为0,因为我们使用的是收益率数据,相对于已经采用了第一次对数差分来计算股票收益率。模型残差图结果与上面使用的ARMA模型基本相同。显然,ARIMA模型同样无法解释时间序列中的条件波动性。到这一步,时间序列的基本模型和建模步骤基本上大家已经熟知,下面利用模型的forecast()方法进行预测。
预测主要有两个函数,一个是predict函数,一个是forecast函数,predict中进行预测的时间段必须在我们训练ARIMA模型的数据中,forecast则是对训练数据集末尾下一个时间段的值进行预估。 model = sm.tsa.ARIMA(sub, order=(1,0,0)) results =model.fit()
#建立ARIMA(0, 1, 1)模型 model = ARIMA(data, (p,1,q)).fit() #给出一份模型报告 model.summary2() #作为期5天的预测,返回预测结果、标准误差、置信区间。 model.forecast(5) 4、案例代码 importpandas # 读取数据,指定日期为索引列 data = pandas.read_csv( ...