下面我们将介绍如何使用Python计算信息熵和互信息。 首先,我们需要导入Python中的相关库: import numpy as np from scipy.special import digamma 接下来,我们将介绍如何计算信息熵。假设我们有一个离散随机变量X,其取值概率分布为p=(p(x1),p(x2),p(xn)),则X的信息熵定义为:H(X)=−∑i=1np(
最后,我们可以将计算得到的互信息熵打印输出。 # 输出结果print("互信息熵为:",mutual_info) 1. 2. 通过以上步骤,我们可以成功计算出两个随机变量之间的互信息熵。希望这篇文章对你有所帮助! 结语 在这篇文章中,我向你展示了如何使用Python来计算互信息熵。通过清晰的步骤和相应的代码示例,你应该能够掌握实现...
定义随机变量XX的概率分布为P(X)P(X),XX的信息量为:h(X)=−log2P(X)h(X)=−log2P(X). 熵 对随机事件的信息量求期望,得到随机变量X的熵: H(X)=−∑x∈XP(x)logP(x) 当对数底数是2时,单位是bit,当对数底数是e时,单位是nat(奈特)。... ...
Python计算信息熵 python 计算互信息 字典树 原来讲明白了剩下的就是具体实现了,最适合存储和计算词频的数据结构就是字典树,这里给一个讲解的很清楚的链接 具体代码 代码已开源,需要的点击这个Github