df=pd.read_csv('data.csv',usecols=['Name','Occupation']) 3.3 处理缺失的数据 CSV文件中可能包含缺失数据,pandas.read_csv()提供了参数来处理这种情况: 代码语言:javascript 复制 df=pd.read_csv('data_with_missing.csv',header=None)df=df.replace('',pd.NA)# 将空字符串替换为NAdf=df.dropna()#...
read_csv()函数是pandas库中的一个用于读取CSV文件的函数。它可以从本地文件、远程URL、文件对象、字符串等不同的数据源中读取数据,并将数据解析为DataFrame对象,以便进行数据分析和操作。该函数有多个参数,其中io参数是最重要的,决定了从哪里读取数据。 io参数的使用 read_csv()函数的io参数用于指定数据的输入源,...
2. 使用Pandas的read_csv函数读取CSV文件 Pandas提供了read_csv函数来读取CSV文件。这个函数非常灵活,支持多种参数来定制读取行为。下面是一个基本的读取CSV文件的例子: python # 假设CSV文件名为'data.csv',且与你的Python脚本在同一目录下 df = pd.read_csv('data.csv') 如果CSV文件位于不同的目录下,或者...
编码问题:文件的编码格式与read_csv()默认的编码格式不匹配。 分隔符错误:CSV文件使用的分隔符不是默认的逗号。 缺失值处理:文件中存在缺失值,而Pandas在读取时没有正确处理这些缺失值。 数据类型不匹配:某些列的数据类型与预期不符,导致读取错误。 解决方法 ...
首先、导入pandas库 import pandas as pd 第二、读取csv文件语句 df=pd.read_csv('D:\dxpm.csv',encoding="gbk")运行结果 print(df)第三、运行结果如下:第四、读取前三行数据,语句如下:print(df.head(3)) #查看前三行数据,如果查看前10行数据,把head(3)改成head(10)运行结果如下:第五、读取...
read_csv()读取文件 1.python读取文件的几种方式 read_csv 从文件,url,文件型对象中加载带分隔符的数据。默认分隔符为逗号 read_table 从文件,url,文件型对象中加载带分隔符的数据。默认分隔符为制表符(“\t”) read_fwf 读取定宽列格式数据(也就是没有分隔符) ...
= pd.read_csv("workingfile.csv", header = None, prefix="var" )在这 种情况下,我们设置var为前缀,告诉 python 在每个列名之前包含此关键字。 var0 var1 va r2 var30 ID first_name company salary1 11 David Aon 742 12 Jamie TCS 763 13 St ...
1.读.csv文件 import pandas as pd data_path =r"F:\joyful-pandas-master\data\my_csv.csv" data = pd.read_csv(data_path) print(data) 原文件: 读取结果: col1 col2 col3 col4 col5 0 2 a 1.4 apple 2020/1/1 1 3 b 3.4 banana 2020/1/2 ...
pandas.read_csv()语法: 1、使用pandas读取csv文件的全部数据: pd.read_csv("filepath",[encoding='编码']) 2、使用pandas读取csv文件的指定列方法: pd.read_csv("filepath",usecols=[0,1,2,...],[encoding='编码']) 3、使用pandas读取csv文件的指定行方法: ...
读取csv/txt/tsv文件,返回一个DataFrame类型的对象。 案例分析: (1)参数只有csv文件的路径,其他保持默认 在读取的时候,默认会将第一行记录当成列名。如果没有列名,我们可以指定header=None。 importpandas as pd df=pd.read_csv('hotelreviews50_1.csv')#hotelreviews50_1.csv文件与.py文件在同一级目录下print...