另一方面,将$(1)$当作$n$重积分,由于积分变量只是跟径向长度$r=\sqrt{x_1^2+x_2^2+\dots+x_n^2}$有关的变量,因此很容易联想到球坐标,在$n$维空间中,可以称为“超球坐标”,不需要将超球坐标完整写出来,只需要注意到,球内的积分,可以化为先对“球壳”进行积分,然后再对球半径进行积分。 $$G(n...