K-Means算法的不足,都是由初始值引起的: 1)初始分类数目k值很难估计,不确定应该分成多少类才最合适(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目k。这里不讲这个算法) 2)不同的随机种子会得到完全不同的结果(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点) 算法流程如下: 1)在数据集中
dis2cents=np.zeros(k)foriinrange(k): dis2cents[i]=np.sqrt(np.sum(np.power(sample-centers[i,:],2)))returndis2cents#子函数:kmeans函数.# 这部分代码完成了kmeans算法中为数据点决定所属类别以及迭代更新类中心点的主要功能。# 注意numpy库的返回最小值索引的argmin函数以及计算平均值的mea...
1 #coding=utf-8 2 import codecs 3 import numpy 4 from numpy import * 5 import pylab 6 7 def loadDataSet(fileName): 8 dataMat = [] 9 fr = codecs.open(fileName) 10 for line in fr.readlines(): 11 curLine = line.strip().split('\t') 12 fltLine = map(float, curLine) 13 ...
plt.show() 这就是一个简单的Python实现K-means算法的例子。请注意,K-means是一种无监督学习方法,它通过迭代来最小化每个聚类的内部点之间的平方距离之和。在实践中,您可能需要对数据进行预处理(如标准化或归一化),并调整KMeans类的参数以获得最佳结果。相关文章推荐 文心一言接入指南:通过百度智能云千帆大模型平...
在Python中,我们可以使用Numpy库来实现K-Means算法。Numpy提供了一种强大的方式来进行数组操作,这使得计算距离矩阵和优化质心的计算更高效便捷。首先,我们需要导入必要的库:import numpy as np 接下来,我们定义一个函数来计算两个矩阵之间的距离矩阵。def compute_distances_no_loops(A, B): return cdist(A,...
K-means 算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,两个对象的距离越近,其相似度就越大。而簇是由距离靠近的对象组成的,因此算法目的是得到紧凑并且独立的簇。 假设要将对象分成 k 个簇,算法过程如下: (1) 随机选取任意 k 个对象作为初始聚类的中心(质心,Centroid),初始代表每一个簇; ...
在Python的sklearn库中,k-means聚类方法的API为sklearn.cluster.KMeans。这个API的几个关键参数及其含义如下:n_clusters:这是一个int类型的参数,默认值为8,它表示形成的簇数以及生成的质心数。init:这是一个可选参数,其值可以是'k-means++'、'random'、ndarray或callable。它定义了初始化方法。默认是'k-...
在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 问题 K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的...
10.2.1算法原理k-means聚类算法也被称为k均值聚类,其主要原理为 (1)首先随机选择k个样本点作为k个...