CNN(Convolutional Neural Network)和LSTM(Long Short-Term Memory)结合起来常用于处理序列数据,特别是时间序列数据或具有空间结构的序列数据。这种结合可以有效地捕捉序列数据中的时空特征。 一种常见的方法是使用CNN来提取序列数据中的空间特征,然后将提取的特征序列输入到LSTM中进行时间建模。这种结合可以充分利用CNN在捕...
如何准备数据并创建适应多变量时间序列预测问题的LSTM。 如何做出预测并将结果重新调整到原始单位。 本教程分为3部分: 1.空气污染预报。 2.基本数据准备。 3.多变量LSTM预测模型。 Python环境 本教程假设你已安装Python SciPy环境,你可以在本教程中使用Python 2或3。你必须使用TensorFlow或Theano后端安装Keras(2.0或更...
本文探讨基于CNN-LSTM模型实现多变量时间序列预测的具体步骤与案例,适用于单站点多变量的单步预测问题,以股票价格预测为例。CNN-LSTM结合了卷积神经网络(CNN)与长短时记忆网络(LSTM),前者擅长提取输入数据的空间特征,后者用于捕捉时序依赖关系,共同应用于具有时空信息的数据处理,如图像序列、视频序列...
构建模拟合模型进行预测,通过训练得到的模型参数,将输入序列作为输入,预测下一个时间点的值。展示预测效果,包括测试集的真实值与预测值的对比,以及原始数据、训练集预测结果和测试集预测结果的可视化。总结,本文基于CNN、LSTM和Attention机制实现的单变量时间序列预测方法,能够有效处理序列数据中的复杂特征...
单站点多变量单步预测问题---基于CNN-LSTM实现多变量时间序列预测股票价格。 注:CNN+LSTM是一种将卷积神经网络(CNN)和LSTM结合起来的模型。CNN用于提取输入数据的空间特征,LSTM用于建模时序关系。CNN-LSTM常用于处理图像序列、视频序列等具有时空信息的数据。在CNN-LSTM可以学习到输入数据中的空间信息和时序依赖关系,并...
单站点多变量单步预测问题---基于CNN-Bi-LSTM-Attention实现多变量时间序列预测股票价格。 二、实现过程 2.1 读取数据集 df=pd.read_csv("data.csv",parse_dates=["Date"],index_col=[0])print(df.shape)print(df.head())fea_num=len(df.columns) df...
单站点多变量单步预测问题---基于CNN-Bi-LSTM实现多变量时间序列预测股票价格。 二、实现过程 2.1 读取数据集 df=pd.read_csv("data.csv",parse_dates=["Date"], index_col=[0]) print(df.shape) print(df.head()) fea_num = len(df.columns) df...
这是我的 第309篇原创文章。一、引言基于CNN(卷积神经网络)和Bi-LSTM(双向长短期记忆网络)的单变量时间序列预测是一种结合空间特征提取和时间依赖建模的方法。以下是一个基于Python和TensorFlow/Keras实现的示…
CNN(Convolutional Neural Network)和LSTM(Long Short-Term Memory)结合起来常用于处理序列数据,特别是时间序列数据或具有空间结构的序列数据。这种结合可以有效地捕捉序列数据中的时空特征。 一种常见的方法是使用CNN来提取序列数据中的空间特征,然后将提取的特征序列输入到LSTM中进行时间建模。这种结合可以充分利用CNN在捕...