1.C语言中的if...else if...else...在python中写为if...elif...else...: score=input("请输入成绩:") score=score.strip() #去除字符串两端的空格 if score.isdigit(): #判断输入的字符串是否只含有数字 score=int(score) if 90<=score<=100: print("A") elif 80<=score<90: print("B") ...
4.2 k 折交叉验证(k-fold cross validation) 最简单的方法是直接调用 cross_val_score,这里用了 5 折交叉验证: >>> from sklearn.model_selection import cross_val_score >>> clf = svm.SVC(kernel='linear', C=1) >>> scores = cross_val_score(clf, iris.data, iris.target, cv=5) >>> scor...
很显然我是属于后者所以我需要在这里记录一下 sklearn 的 cross_val_score: 我使用是cross_
从线性回归到逻辑回归 在第2章,线性回归里面,我们介绍了一元线性回归,多元线性回归和多项式回归。这些...
cross_val_score 进行微调时,目标列包含分类值,而不是数字值。当我将 cross_val_score 设置为处理准确度、对数损失、roc_auctype 评分时,它会起作用。另一方面,当我将其设置为使用 f1、精度、召回率评分时,我收到错误。下面是我尝试对鸢尾花数据集进行分类时的示例: 代码: cv_results = cross_val_score(...
1)sklearn.cross_validation.cross_val_score 2)sklearn.cross_validation.train_test_split 就像在这个question中一样。 代码如下: #X is my data and Y the corresponding binary labels #My classifier clf = svm.SVC(class_weight='auto', kernel=kernel, gamma=gamma, ...