于是就有两种解决思路:第一种是基于气球形状做轮廓提取,只要是闭合椭圆或圆形形就认为是目标物体;第二种是基于气球颜色,只要符合目标物体的颜色就认为是目标物体。 因为摄像头是装在四足机器人(它的任务是去扎气球)身上的,所以它如果移动到摄像头视野范围内气球不成闭合椭圆或圆形的时候就无法识别了,再加上场地灯光...
目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色、纹理、形状。其中颜色属性运用十分广泛,也比较容易实现。下面就向大家分享一个我做的小实验———通过OpenCV的Python接口实现从视频中物体颜色识别和跟踪。 先看一下最终效果: 下面就是我们完整的代码实现(已调试运行): 代码语言:...
二、如何实现基于颜色的目标检测? 整个算法的实现步骤比较简单,具体的步骤如下所示: 步骤1-根据图片中的目标设定合适的lower和upper阈值; 步骤2-使用cv2.inRange(img,lower, upper)函数来进行阈值化操作,其中lower和upper就是我们所设定的阈值; 步骤3-使用cv2.bitwise_and()函数进行与操作,即选择出合适的...
目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色、纹理、形状。其中颜色属性运用十分广泛,也比较容易实现。下面就向大家分享一个我做的小实验———通过OpenCV的Python接口来实现从视频中进行颜色识别和跟踪。 下面就是我们完整的代码实现(已调试运行): import numpyasnp import cv2...
目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色、纹理、形状。其中颜色属性运用十分广泛,也比较容易实现。下面就向大家分享一个我做的小实验———通过OpenCV的Python接口实现从视频中物体颜色识别和跟踪。 先看一下最终效果: ...
于是我就采用了第二种方法,实现思路大概如下: 首先对图像进行形态学处理,具体为将读入的灰度图进行一次滤波操作,将图像转化成HSV图,然后进行腐蚀操作。接着就对目标颜色进行识别和提取。然后提取图像的轮廓,过滤掉轮廓围成面积较小的物体后将剩余物体视为目标。接下来就绘制目标的外接矩形(不必要,用于调试。当然也为...
OpenCV中的inRange()函数可实现二值化功能(这点类似threshold()函数),更关键的是可以同时针对多通道进行操作,使用起来非常方便!主要是将在两个阈值内的像素值设置为白色(255),而不在阈值区间内的像素值设置为黑色(0),该功能类似于之间所讲的双阈值化操作。函数原型(C++): ...
$ conda install opencv $ jupyter notebook 一些重要的术语 轮廓 轮廓可以简单地解释为连接所有连续点(连同边界)的曲线,具有相同的颜色或亮度。轮廓是形状分析和目标检测和识别的有用工具。 阈值 在灰度图像上应用阈值处理使其成为二值图像。你可以设置一个阈值,其中低于此阈值的所有值都将变为黑色,高于此阈值的所...
$sourceactivate myEnv$conda install anaconda$conda activate myEnv$conda install opencv $jupyter notebook 这将在浏览器中为您打开jupyter notebook。 一些重要的术语 轮廓 轮廓可以简单地解释为连接所有连续点(连同边界)的曲线,具有相同的颜色或亮度。轮廓是形状分析和目标检测和识别的有用工具。