这里的col1和col2是JSON中的顶级字段,nested_json_field是包含嵌套JSON的字段名。通过使用selectExpr函数,我们可以将嵌套的JSON字段展开为DataFrame中的多个列。 将DataFrame转换为TSV格式: 代码语言:txt 复制 tsv_data = flatten_data.selectExpr("col1", "col2", "concat_ws('\t', *) as tsv_data") 使用c...
+---+---+---+---+---+---+---+---+---+---+
+---+---+---+---+---
Assume we have below nested JSON data: [ { "data": { "city": { "addresses": [ { "id": "my-id" }, { "id": "my-id2" } ] } } } ] To hash the nested id field you need to write the following PySpark code: import pyspark.sql.functions as F hashed = df.withColumn("data...
defflatten(df:DataFrame,delimiter="_")->DataFrame:'''Flatten nested struct columns in `df` by one level separated by `delimiter`, i.e.:df = [ {'a': {'b': 1, 'c': 2} } ]df = flatten(df, '_')-> [ {'a_b': 1, 'a_c': 2} ]'''flat_cols=[nameforname,typeindf.dtyp...
json File in Python Scratch and Python Basics Sentiment Analysis using NLTK Desktop Battery Notifier using Python How to Assign List Item to Dictionary How to Compress Images in Python How to Concatenate Tuples to Nested Tuples How to Create a Simple Chatroom in Python How to Humanize the De...
需要把数字类型转化为字符串类型,再进行连接 第一种 df1 = pd.DataFrame({'Year': ['2014', '...