isnull().sum().sum() # 计算empty值的数量 empty_count = (data == '').sum().sum() # 计算NaN值的数量 nan_count = data.isna().sum().sum() print("NULL值的数量:", null_count) print("empty值的数量:", empty_count) print("NaN值的数量:", nan_count) 对于Pyspark,我们可以使用...
以下代码片段是数据框的一个快速示例: # spark is an existing SparkSessiondf = spark.read.json("examples/src/main/resources/people.json")# Displays the content of the DataFrame to stdoutdf.show()#+---+---+#| age| name|#+---+---+#+null|Jackson|#| 30| Martin|#| 19| Melvin|#+-...
isEmpty() Returns True if this DataFrame is empty. 判断是否为空 isLocal() Returns True if the collect() and take() methods can be run locally (without any Spark executors). 判断driver是否可以容纳collect() join(other[, on, how]) Joins with another DataFrame, using the given join expressi...
16.instr 返回指定字符串的起始位置,以1开始的索引,如果找不到就返回0 17.isnan,isnull 检测是否...
empty_dataframes = spark.createDataFrame(spark.sparkContext.emptyRDD(), schema) 1. 2. 3. 4. 5. 6. 7. 8. 9. 1.2、createDataFrame() : 创建一个spark数据框 sdf = sqlContext.createDataFrame([("a1", "小明", 12, 56.5), ("a2", "小红", 15, 23.0),\ ...
这里使用了filter函数和isNull函数来筛选出空列。 动态填充空列: 代码语言:txt 复制 for column in null_columns: df = df.withColumn(column, col("default_value")) 这里使用了withColumn函数来添加新列,并使用col函数指定默认值。 显示填充后的dataframe: 代码语言:txt 复制 df.show() 以上是使用pyspark在dat...
df_empty.isEmpty() #查看DataFrame是否是local,经过collect和take后位local df.isLocal() #获取schema df.printSchema() df.schema #获得DataFrame的column names df.columns #获取DataFrame的指定column df.age #获得DataFrame的column names及数据类型
17 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: zzh; groups with view permissions: EMPTY; users with modify permissions: zzh; groups with modify permissions: EMPTY 25/02/03 19:27:17 INFO Utils: Successfully started service 'spark...
Pyspark: Table Dataframe returning empty records from Partitioned Table Labels: Apache Hive Apache Impala Apache Sqoop Cloudera Hue HDFS FrozenWave Super Collaborator Created on 01-05-2016 04:56 AM - edited 09-16-2022 02:55 AM Hi all, I think it's time ...
To replace strings with other values, use the replace method. In the example below, any empty address strings are replaced with the word UNKNOWN:Python Копирај df_customer_phone_filled = df_customer.na.replace([""], ["UNKNOWN"], subset=["c_phone"]) Append rows...