pyspark dataframe Column alias 重命名列(name) df = spark.createDataFrame( [(2, "Alice"), (5, "Bob")], ["age", "name"])df.select(df.age.alias("age2")).show()+---+|age2|+---+| 2|| 5|+---+ astype alias cast 修改列类型 data.schemaStructType([StructField('name', String...
cols –listof new column names (string)# 返回具有新指定列名的DataFramedf.toDF('f1','f2') DF与RDD互换 rdd_df = df.rdd# DF转RDDdf = rdd_df.toDF()# RDD转DF DF和Pandas互换 pandas_df = spark_df.toPandas() spark_df = sqlContext.createDataFrame(pandas_df) union合并+去重: nodes_cust ...
PySpark DataFrame能够通过pyspark.sql.SparkSession.createDataFrame创建,通常通过传递列表(list)、元组(tuples)和字典(dictionaries)的列表和pyspark.sql.Rows,Pandas DataFrame,由此类列表组成的RDD转换。pyspark.sql.SparkSession.createDataFrame接收schema参数指定DataFrame的架构(优化可加速)。省略时,PySpark通过从数据中提取...
importpandasaspdfrompyspark.sqlimportSparkSessioncolors=['white','green','yellow','red','brown','pink']color_df=pd.DataFrame(colors,columns=['color'])color_df['length']=color_df['color'].apply(len)color_df=spark.createDataFrame(color_df)color_df.show() DF的架构查看 df.printSchema() d...
我们可以利用drop函数从数据帧中删除任何列。如果我们想从 dataframe 中删除 mobile列,我们可以将它作为一个参数传递给drop函数。 [In]: df_new=df.drop('mobile') [In]: df_new.show() [Out]: 写入数据 一旦我们完成了处理步骤,我们就可以以所需的格式将干净的数据帧写入所需的位置(本地/云)。
示例二 from pyspark.sql import Row from pyspark.sql.functions import explode eDF = spark.createDataFrame([Row( a=1, intlist=[1, 2, 3], mapfield={"a": "b"})]) eDF.select(explode(eDF.intlist).alias("anInt")).show() +---+ |anInt| +---+ | 1| | 2| | 3| +---+ isin...
column: [{key1:value1}, {key2:value2}, {key3:value3}] 我想将此列拆分为单独的列,在同一行中键名作为列名,值作为列值。最终结果如 key1:value1, key2:value2, key3:value3 如何在pyspark中实现这一点? E.g. 要创建dataframe的示例数据: ...
= SparkSession.builder.getOrCreate() # 创建示例DataFrame data = [("Alice", 25), ("Bob", 30), ("Charlie", 35)] df = spark.createDataFrame(data, ["Name", "Age"]) # 添加新列 df_with_new_column = df.withColumn("Gender", "Female") # 显示DataFrame df_with_new_column.show() ...
PySpark是Spark的PythonAPI,通过Pyspark可以方便地使用 Python编写 Spark 应用程序, 其支持 了Spark 的大部分功能,例如 Spark SQL、DataFrame、Streaming、MLLIB(ML)和 Spark Core。 二、PySpark分布式机器学习 2.1 PySpark机器学习库 Pyspark中支持两个机器学习库:mllib及ml,区别在于ml主要操作的是DataFrame,而mllib操作...
1 DataFrame数据的行转列 1.1 需求 在做数据处理时我们可能会经常用到Apache Spark的 DataFrame来对数据进行处理,需要将行数据转成列数据来处理,例如一些指标数据一般会保存在KV类型数据库,根据几个字段作为key,将计算指标作为value保存起来,这样多个用户多个指标就会形成一个窄表,我们在使用这个数据时又希望按照每个用...