We will be using dataframe nameddf_basket1 Maximum value of the column in pyspark with example: Maximum value of the column in pyspark is calculated using aggregate function –agg()function. The agg() Function takes up the column name and ‘max’ keyword which returns the maximum value of t...
--- 6、去重 --- 6.1 distinct:返回一个不包含重复记录的DataFrame 6.2 dropDuplicates:根据指定字段去重 --- 7、 格式转换 --- pandas-spark.dataframe互转 转化为RDD --- 8、SQL操作 --- --- 9、读写csv --- 延伸一:去除两个表重复的内容 参考文献 1、--- 查 --- — 1.1 行元素查询操作 —...
spark dataframe是immutable, 因此每次返回的都是一个新的dataframe (1)列操作 # add a new column data = data.withColumn("newCol",df.oldCol+1) # replace the old column data = data.withColumn("oldCol",newCol) # rename the column data.withColumnRenamed("oldName","newName") # change column ...
在上述代码中,我们首先使用 groupBy 对 DataFrame 进行分组,按照 “groupColumn” 列的值进行分组。然后,通过 agg 函数对每个组进行聚合操作,传递了三个聚合函数:sum、avg 和 max,分别应用于 “col1”、“col2” 和“col3” 列。最后,使用 show 方法展示聚合结果。通过agg 函数,你可以根据需求选择不同的聚合函...
正如前面创建DataFrame所使用到的StructType和StructField一样,当我们需要自定义我们列名,列数据类型,以及列空值是否为null时,需要用到pyspark所提供的StructType对象。 • StructField定义列名,数据类型,空值是否为null • StructType是StructField的集合 1、创建DataFrame import pyspark from pyspark.sql import SparkSess...
什么是DataFrame? DataFrames通常是指本质上是表格形式的数据结构。它代表行,每个行都包含许多观察值。 行可以具有多种数据格式(异构),而列可以具有相同数据类型(异构)的数据。 DataFrame通常除数据外还包含一些元数据。例如,列名和行名。 我们可以说DataFrames是二维数据结构,类似于SQL表或电子表格。
PySpark DataFrame是惰性求值的,只是选择一列并不会触发计算,而是返回一个Column实例。 df.a 事实上,大多数按列操作都会返回Column实例。 from pyspark.sql import Column from pyspark.sql.functions import upper type(df.c) == type(upper(df.c)) == type(df.c.isNull()) 可以使用这些Column实例从DataFrame...
df = spark.createDataFrame(data, schema=[‘id’, ‘name’, ‘age’, ‘eyccolor’]) df.show() df.count() 2.3. 读取json 读取spark下面的示例数据 file = r"D:\hadoop_spark\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\people.json" df = spark.read.json(file) df.show() 2.4....
在下一步中,我们创建一个 UDF (brand_udf),它使用这个函数并捕获它的数据类型,以便将这个转换应用到 dataframe 的移动列上。 [In]: brand_udf=udf(price_range,StringType()) 在最后一步,我们将udf(brand_udf)应用到 dataframe 的 mobile列,并创建一个具有新值的新列(price_range)。
data = [("Alice", 25, "New York"), ("Bob", 30, "San Francisco")] df = spark.createDataFrame(data, ["name", "age", "city"]) 使用struct函数创建嵌套列: 代码语言:txt 复制 df_with_nested_column = df.withColumn("address", struct(df["city"])) ...