from pyspark.sql import functions as func df = spark.createDataFrame([(1, 2, 3) if i % 2 == 0 else (i, 2 * i, i % 4) for i in range(10)], ["a", "b", "c"]) # 注意agg函数的使用 df.agg(func.countDistinct('a')).show() 1.
GroupedData对象 GroupedData对象是一个特殊的DataFrame数据集 其类全名:<class 'pyspark.sql.group.GroupedData'> 这个对象是经过groupBy后得到的返回值, 内部记录了 以分组形式存储的数据 GroupedData对象其实也有很多API,比如前面的count方法就是这个对象的内置方法 除此之外,像:min、max、avg、sum、等等许多方法都存在 ...
() # 4.1.3.6 统计操作 personDF.groupBy("age").count().show() # 5-SQL操作 创建临时试图 # Creates a temporary view using the DataFrame personDF.createOrReplaceTempView("people") # 5.1.1 查看DataFrame中的内容 spark.sql("SELECT * FROM people").show() # 5.1.2 查看DataFrame的Scheme信息 ...
df = spark.createDataFrame(data, ["id", "category", "value"]) 定义一个窗口规范: 代码语言:txt 复制 windowSpec = Window.partitionBy("id").orderBy("category").rowsBetween(-1, 1) 这个窗口规范指定了按照"id"列进行分组,并按照"category"列进行排序,窗口范围为当前行的前一行到...
createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) df.select(nanvl("a", "b").alias("r1"), nanvl(df.a, df.b).alias("r2")).show() 7、分组统计 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # 分组计算1 color_df.groupBy('length').count()....
pyspark的dataframe使用聚合操作和pandas的比较像,如下的格式: df2 = df1.groupby('列名1', '列名2').agg(count(df1.列1).alias('新列名'), sum(df1.列2).alias('新列名'), sum(df1.列3).alias('新列名')) 如何改列名。注意这里面是旧列名在前,新列名在后,有点特殊 df.withColumnRenamed('旧列...
groupBy + agg 聚合 (1)agg agg(self, *exprs)计算聚合并将结果返回为:`DataFrame` 可用的聚合函数有“avg”、“max”、“min”、“sum”、“count”。 :param exprs:从列名(字符串)到聚合函数(字符串)的dict映射, 或:类:`Column`的列表。# 官方接口示例>>>gdf = df.groupBy(df.name)>>>sorted...
51CTO博客已为您找到关于pyspark dataframe groupby 分档的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及pyspark dataframe groupby 分档问答内容。更多pyspark dataframe groupby 分档相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进
df.filter(df['age'] >21).show() df.groupBy("age").count().show()# Register the DataFrame as a SQL temporary viewdf.createOrReplaceTempView("people") sqlDF = spark.sql("SELECT * FROM people") sqlDF.show()# Register the DataFrame as a global temporary viewdf.createGlobalTempView("peop...
pyspark.sql.SparkSession.createDataFrame接收schema参数指定DataFrame的架构(优化可加速)。省略时,PySpark通过从数据中提取样本来推断相应的模式。创建不输入schema格式的DataFramefrom datetime import datetime, date import pandas as pd from pyspark.sql import Row df = spark.createDataFrame([ Row(a=1, b=2.,...