df.select(df.age.alias('age_value'),'name') 查询某列为null的行: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 from pyspark.sql.functionsimportisnull df=df.filter(isnull("col_a")) 输出list类型,list中每个元素是Row类: 代码语言:javascript 代码运
### join(other, on=None, how=None) 通过指定的表达式将两个DataFrame进行合并 (1.3版本新增) ### 参数: - other --- 被合并的DataFrame - on --- 要合并的列,由列名组成的list,一个表达式(字符串),或一个由列对象组成的list;如果为列名或列名组成的list,那么这些列必须在两个DataFrame中都存在. ...
# filter data by pass a string temp1 = data.filter("col > 1000") # filter data by pass a column of boolean value temp2 = data.filter(data.col > 1000) (3)选择数据 # select based on column name temp1 = data.select("col1","col2") temp1 = data.select("col1*100 as newCol1")...
(6)filter运行类SQL color_df.filter("color='green'").show() color_df.filter("color like 'b%'").show() (7)where方法的SQL color_df.where("color like '%yellow%'").show() (8)直接使用SQL语法 # 首先dataframe注册为临时表,然后执行SQL查询color_df.createOrReplaceTempView("color_...
3.2.1、column: 获取数据框的所有列名 3.2.2、select(): 选择一列或多列 3.2.3、orderBy 或 sort: 排序 4、提取数据 4.1、将dataframe转为字典 4.2、将dataframe的某一列转化为list 4.3、过滤数据 : filter和where方法的效果相同 4.4、对null或者NaN数据进行过滤 ...
() # dataframe列名重命名 # pandas...df=df.rename(columns={'a':'aa'}) # spark-方法1 # 在创建dataframe的时候重命名 data = spark.createDataFrame(data...# 选择一列的几种方式,比较麻烦,不像pandas直接用df['cols']就可以了 # 需要在filter,select等操作符中才能使用 color_df.select('length...
filter运行类SQL color_df.filter("color='green'").show() color_df.filter("color like 'b%'").show() where方法的SQL color_df.where("color like '%yellow%'").show() 直接使用SQL语法 # 首先dataframe注册为临时表,然后执行SQL查询 color_df.createOrReplaceTempView("color_df") spark.sql("selec...
Spark 中的核心概念是 RDD,它类似于 pandas DataFrame,或 Python 字典或列表。这是 Spark 用来在基础设施上存储大量数据的一种方式。RDD 与存储在本地内存中的内容(如 pandas DataFrame)的关键区别在于,RDD 分布在许多机器上,但看起来像一个统一的数据集。这意味着,如果您有大量数据要并行操作,您可以将其放入 RD...
df.select(df.age.alias('age_value'),'name') 筛选 df.filter(df.name=='Alice') 增加列 增加列有2种方法,一种是基于现在的列计算;一种是用pyspark.sql.functions的lit()增加常数列。 df.select(df.age+1,'age','name') df.select(F.lit(0).alias('id'),'age','name') ...
Minimum value of each group of dataframe in pyspark with example We will be using dataframe nameddf_basket1 Maximum value of the column in pyspark with example: Maximum value of the column in pyspark is calculated using aggregate function –agg()function. The agg() Function takes up the colum...