from pyspark.sql import SparkSession # 创建SparkSession对象 spark = SparkSession.builder.getOrCreate() # 创建示例DataFrame data = [("Alice", 25), ("Bob", 30), ("Charlie", 35)] df = spark.createDataFrame(data, ["Name", "Age"]) # 添加新列 df_with_new_column = df.withColumn("Gen...
# To convert the type of a column using the .cast() method, you can write code like this: dataframe = dataframe.withColumn("col", dataframe.col.cast("new_type")) # Cast the columns to integers model_data = model_data.withColumn("arr_delay", model_data.arr_delay.cast("integer")) m...
some_x_filter & # second filter is to compare 'a' with array_column - i tried using F.array_contains (F.array_contains(F.col('array_column'), F.lit(a))) ) some_x_filter也在以类似的方式工作 some_x_filter正在比较字符串列数组中的字符串值。 但现在a包含一个字符串列表,我无法将其与...
如何将一个表的列值与另一个表的列名称pyspark匹配在df 2中,引入一个具有一些常数值的虚拟列,并按...
Use the spark.table() method with the argument "flights" to create a DataFrame containing the values of the flights table in the .catalog. Save it as flights. Show the head of flights using flights.show(). The column air_time contains the duration of the flight in minutes. ...
(col,value)## Collection 函数,return True if the array contains the given value.The collection elements and value must be of the same typedf=spark.createDataFrame([(['a','b','c'],),([],)],['data'])df.select(array_contains(df.data,'a')).collect()[Row(array_contains(data,a)=...
# Print schema of DataFrame sms.printSchema() Data Preparation 准备数据 删除行和列 # Remove the 'flight' columnflights_drop_column=flights.drop('flight')# Number of records with missing 'delay' valuesflights_drop_column.filter('delay IS NULL').count()# Remove records with missing 'delay' ...
有一个很棒的pyspark包,它比较两个 Dataframe ,包的名字是datacompyhttps://capitalone.github.io/...
df = spark.createDataFrame(data = simpleData, schema = columns) df.printSchema() df.show(truncate=False) Yields below output # Output: root |-- employee_name: string (nullable = true) |-- department: string (nullable = true) |-- salary: long (nullable = true) ...
Now that you have reviewed the data and prepared it as a DataFrame with numeric values, you're ready to train a model to predict future bike sharing rentals. Most MLlib algorithms require a single input column containing a vector of features and a single target column. The DataFrame curren...