When you pass a column object, you can perform operations like addition or subtraction on the column to change the data contained in it, much like inside .withColumn().The difference between .select() and .withColumn() methods is that .select() returns only the columns you specify, while ...
(data, columns) # 检查数据类型并转换 for column in df.columns: if df.schema[column].dataType == StringType(): df = df.withColumn(column, df[column].isNull().cast(StringType()).when(df[column] == '', None).otherwise(df[column])) # 应用 na.fill df = df.na.fill(0) # 显示...
代码和逻辑如下
label_stringIdx = StringIndexer(inputCol = "Category", outputCol = "label") pipeline = Pipeline(stages=[regexTokenizer, stopwordsRemover, countVectors, label_stringIdx]) # Fit the pipeline to training documents. pipelineFit = pipeline.fit(data) dataset = pipelineFit.transform(data) (trainingData...
You can see that age_square has been successfully added to the data frame. You can change the order of the variables with select. Below, you bring age_square right after age. COLUMNS = ['age', 'age_square', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital', ...
Now suppose we want to extend what we’ve done above. This time if a cell contains any one of 3 strings then we change the corresponding cell in another column. 现在假设我们要扩展上面所做的工作。 这次,如果一个单元格包含3个字符串中的任何一个,则我们在另一列中更改相应的单元格。
# Don't change this queryquery="SELECT origin, dest, COUNT(*) as N FROM flights GROUP BY origin, dest"# Run the queryflight_counts=spark.sql(query)# Convert the results to a pandas DataFramepd_counts=flight_counts.toPandas()# Print the head of pd_countsprint(pd_counts.head()) ...
您应该能够查询系统表。您可以在这些表上运行比较,以查看自上次运行以来发生了哪些更改。
This example outputs CSV data to a single file. The file will be written in a directory called single.csv and have a random name. There is no way to change this behavior. If you need to write to a single file with a name you choose, consider converting it to a Pandas dataframe and...
无法删除列(pyspark / databricks)是指在使用pyspark或者databricks进行数据处理时,无法删除数据表或者数据框中的某一列。 在pyspark或者databricks中...