异构图在PyG内对应的数据类是torch_geometric.data.HeteroData,对于每一个节点/边类型,需要定义其节点特征、edge_index和边特征(对应torch_geometric.data.Data类内的data.x、data.edge_index和data.edge_attr)。例如: from torch_geometric.data import HeteroData data = HeteroData() data['paper'].x = .....
PyG 2.0 是一个新的版本,提供了复杂的异构图支持、GraphGym 集成以及其他新特性。 PyG 2.0 中提供了完全的异构图支持。异构图支持包括数据存储层的完整重写(同时保持向后兼容性)、异构图转换、通过邻采样的关系型数据加载例程,以及一整套异构 GNN 模型 / 示例。 突出亮点 异构图存储:异构图现在可以存储在它们自己...
ICDM 2022 : 大规模电商图上的风险商品检测,要求在一张异构图上跑点分类,由于是异常检测,正负样本数据集在1比10,记录一下初赛过程。 数据 过程 赛事官方开源了PyG实现的baseline,拿过来直接用于预处理数据了,将图结构进行预处理后得到pt文件,使用pt文件做后续处理: graph = torch.load(dataset) //dataset ="xxx...
PyG 2.0 是一个新的版本,提供了复杂的异构图支持、GraphGym 集成以及其他新特性。 PyG 2.0 中提供了完全的异构图支持。异构图支持包括数据存储层的完整重写(同时保持向后兼容性)、异构图转换、通过邻采样的关系型数据加载例程,以及一整套异构 GNN 模型 / 示例。 突出亮点 异构图存储:异构图现在可以存储在它们自己...
当前最流行和广泛使用的 GNN 库 PyG(PyTorch Geometric)现在出 2.0 版本了,新版本提供了全面的异构图支持、GraphGam 以及很多其他特性,这一系列改进,为使用者带来了更好的用户体验。 PyTorch Geometric(PyG)是一个构建于 PyTorch 之上的库,用来为一系列与结构化数据相关的应用编写和训练图神经网络(GNN)。PyG 对机...
当前最流行和广泛使用的 GNN 库 PyG(PyTorch Geometric)现在出 2.0 版本了,新版本提供了全面的异构图支持、GraphGam 以及很多其他特性,这一系列改进,为使用者带来了更好的用户体验。 PyTorch Geometric(PyG)是一个构建于 PyTorch 之上的库,用来为一系列与结构化数据相关的应用编写和训练图神经网络(GNN)。PyG 对机...
当前最流行和广泛使用的 GNN 库 PyG(PyTorch Geometric)现在出 2.0 版本了,新版本提供了全面的异构图支持、GraphGam 以及很多其他特性,这一系列改进,为使用者带来了更好的用户体验。 PyTorch Geometric(PyG)是一个构建于 PyTorch 之上的库,用来为一系列与结构化数据相关的应用编写和训练图神经网络(GNN)。PyG 对机...
当前最流行和广泛使用的 GNN 库 PyG(PyTorch Geometric)现在出 2.0 版本了,新版本提供了全面的异构图支持、GraphGam 以及很多其他特性,这一系列改进,为使用者带来了更好的用户体验。 PyTorch Geometric(PyG)是一个构建于 PyTorch 之上的库,用来为一系列与结构化数据相关的应用编写和训练图神经网络(GNN)。PyG 对机...
当前最流行和广泛使用的 GNN 库 PyG(PyTorch Geometric)现在出 2.0 版本了,新版本提供了全面的异构图支持、GraphGam 以及很多其他特性,这一系列改进,为使用者带来了更好的用户体验。 PyTorch Geometric(PyG)是一个构建于 PyTorch 之上的库,用来为一系列与结构化数据相关的应用编写和训练图神经网络(GNN)。PyG 对机...
当前最流行和广泛使用的 GNN 库 PyG(PyTorch Geometric)现在出 2.0 版本了,新版本提供了全面的异构图支持、GraphGam 以及很多其他特性,这一系列改进,为使用者带来了更好的用户体验。 PyTorch Geometric(PyG)是一个构建于 PyTorch 之上的库,用来为一系列与结构化数据相关的应用编写和训练图神经网络(GNN)。PyG 对机...