在PSO-SVM中,PSO用于优化SVM的参数,如C(惩罚系数)、γ(核函数中的参数)。具体步骤如下: 初始化PSO种群; 每个粒子代表一组SVM参数; 使用交叉验证的方法评估每组参数下的SVM分类性能; 根据分类性能更新粒子的位置和速度; 迭代直至满足终止条件。 PSO-SVM不仅能够有效解决SVM中参数选择的问题,还能够获得比传统SVM和B...
pop(j, k) = (pso_option.popgmax - pso_option.popgmin) * rand + pso_option.popgmin; end end % 适应度值 cmd = [' -v ', num2str(pso_option.v), ' -c ', num2str(pop(j, 1)), ' -g ', num2str(pop(j, 2))]; fitness(j) = (100 - svmtrain(t_train, p_train, cmd)) ...
SVM 是一种二分类模型,其基本思想是找到一个最优的超平面,使得不同类别的样本能够被最大化地分开。PSO-SVM 模型是在传统的 SVM 模型基础上引入了粒子群优化算法,通过不断迭代优化 SVM 的参数,以提高分类的准确性。而 QPSO-SVM 模型则是在 PSO-SVM 模型的基础上,采用了量子粒子群优化算法,进一步提高了模型的性...
为了进一步提高风功率预测的准确性,我们采用了粒子群算法(PSO)优化支持向量机(SVM)。粒子群算法是一种模拟鸟群觅食行为的优化算法,通过迭代更新粒子的位置和速度,寻找最优解。而SVM是一种常用的机器学习模型,用于分类和预测风功率数据。通过PSO优化SVM,我们可以更高效地找到最优的风功率预测模型。 四、仿真实验与结果...
还不用改代码,替换数据集就可以运行了,非常适合科研小白啊! 基于粒子群优化支持向量机(PSO-SVM)的数据回归预测 PSO-SVM回归and分类 matlab代码,推荐 2018B 版本及以上(有混淆矩阵存在),仅支持 Windows 64位…
PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab)1.输入多个特征,分四类2.运行版本2018b及以上所有程序经过验证,保证原始程序有效运行。ID:2229695080756287
基于PSO-SVM的多分类财务预警模型
目前的电能质量复合扰动分类识别方法存在参数选择困难和识别精度不高的问题.本文提出了一种基于粒子群优化(particle swarm optimization,PSO)和支持向量机(support vector machine,SVM)的电能质量复合扰动识别方法.首先采用db4小波对扰动信号进行特征提取,通过对得到的近似分量和各层细节分量参数进行数学变换,获得合适的训练...
标签: PSO SVM MATLAB 粒子群 高速下载 资源简介 SVM用于分类时的参数优化,粒子群优化算法,用于优化核函数的c,g两个参数 代码片段和文件信息 %% SVM神经网络中的参数优化---如何更好的提升分类器的性能 %% % 该案例作者申明: 1:本人长期驻扎在此板块里,对该案例提问,做到有问必答。 2:此案例有配套的...
1.基于GC-MS技术结合PSO-SVM算法的植物油分类方法,其特征在于,包括如下步骤: 1)收集不同产地、不同种类的植物油样品; 2)脂肪酸甲酯化处理与GC-MS技术分析:对植物油样品进行甲酯化处理,通过GC-MS技术采集植物油的脂肪酸指纹图谱; 3)PSO优化的SVM模型区分植物油的种类:将收集的植物油样本被随机分成三个数据集,...