通过使用粒子群优化算法对LSTM模型进行参数搜索和优化,PSO-LSTM在训练过程中能够更好地避免陷入局部最优,并且能够更快地收敛到全局最优解。实验证明,PSO-LSTM在多个任务和数据集上都取得了较好的性能表现,比传统的LSTM模型具有更好的泛化能力和稳定性。 PSO-LSTM的时间序列预测算法的原理基于以下步骤: 「初始化粒子群...
粒子群算法(Particle Swarm Optimization, PSO)是一种启发式优化算法,可以用于优化神经网络模型的参数。在优化长短期记忆网络(Long Short-Term Memory, LSTM)时,可以结合粒子群算法来搜索最优的参数设置,以提高LSTM模型的性能和泛化能力。下面是一个简单的步骤示例,演示如何使用PSO来优化LSTM的超参数。 二、实现过程 2...
1.Matlab实现QPSO-LSTM、PSO-LSTM和LSTM神经网络时间序列预测; 2.输入数据为单变量时间序列数据,即一维数据; 3.运行环境Matlab2020及以上,依次运行Main1LSTMTS、Main2PSOLSTMTS、Main3QPSOLSTMTS、Main4CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集; LSTM(长短时记忆模型)与粒子群算法优...
Matlab基于PSO-LSTM粒子群算法优化长短期记忆网络的时间序列预测,PSO-LSTM时间序列预测(完整程序和数据) 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018b及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。 模型介绍 提出一种基于粒子群优化( PSO) 的长短...
(粒子群优化长短期记忆神经网络)时间序列预测模型,预测效果如上, PSO-LSTM、LSTM时序预测源码地址:https://mbd.pub/o/bread/mbd-ZJ2XmZZv PSO-BiLSTM、BiLSTM时序预测源码地址: PSO-GRU、GRU时序预测源码地址: PSO-BiGRU、BiGRU时序预测源码地址:运行环境:Matlab2020b 需要定制同学添加QQ【1153460737】/加群(Q群...
【PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多变量时间序列预测】 PSO-LSTM-Attention多变量时间序列预测:https://mbd.pub/o/bread/mbd-ZZiTmphs 运行环境:Matlab2023b 需要定制同学添加QQ【1153460737】/加群(Q群-693349448)交流,记得备注。 科技 计算机技术 Attention 长短期记忆神经网络 ...
PSO优化LSTM做时间序列的预测,优化的是隐藏层单元数目,批处理大小,时间窗口大小,学习率等网络参数。ID:1888668442690309
为更准确地预测中小河流水文时间序列变化,建立改进粒子群优化算法(PSO)与长短期记忆神经网络(LSTM)结合的预测模型.提出利用非线性惯性权重变化,加入自适应变异等操作的方法,改善PSO的寻优能力;实现LSTM与注意力机制(attention mechanism)的结合,建立PSO-LSTM组合模型,改变传统LSTM在水文预测中参数选取困难,预测不精准的情况...
PSO优化后: 2.算法运行软件版本 MATLAB2022A 3.算法理论概述 时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现...
PSO优化后: 2.算法运行软件版本 MATLAB2022A 3.算法理论概述 时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现...